先改pom.xml:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.mcq</groupId>
<artifactId>mr-1101</artifactId>
<version>0.0.1-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>jdk.tools</groupId>
<artifactId>jdk.tools</artifactId>
<version>1.8</version>
<scope>system</scope>
<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.2</version>
</dependency>
</dependencies>
</project>

在resources文件夹下添加文件 log4j.properties:

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

WordcountDriver.java:

package com.mcq;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordcountDriver{
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
System.out.println("hello");
Configuration conf=new Configuration();
//1.获取Job对象
Job job=Job.getInstance(conf);
//2.设置jar存储位置
job.setJarByClass(WordcountDriver.class);
//3.关联Map和Reduce类
job.setMapperClass(WordcountMapper.class);
job.setReducerClass(WordcountReducer.class);
//4.设置Mapper阶段输出数据的key和value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//5.设置最终输出的key和value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//6.设置输入路径和输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//7.提交Job
// job.submit();
job.waitForCompletion(true);
// boolean res=job.waitForCompletion(true);//true表示打印结果
// System.exit(res?0:1);
}
}

WordcountMapper.java:

package com.mcq;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; //map阶段
//KEYIN:输入数据的key(偏移量,比如第一行是0~19,第二行是20~25),必须是LongWritable
//VALUEIN:输入数据的value(比如文本内容是字符串,那就填Text)
//KEYOUT:输出数据的key类型
//VALUEOUT:输出数据的值类型
public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
IntWritable v=new IntWritable(1);
Text k = new Text();
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//1.获取一行
String line=value.toString();
//2.切割单词
String[] words=line.split(" ");
//3.循环写出
for(String word:words) {
k.set(word);
context.write(k, v);
}
}
}

WordcountReducer.java:

package com.mcq;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; //KEYIN、VALUEIN:map阶段输出的key和value类型
public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
IntWritable v=new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values,
Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
// TODO Auto-generated method stub
int sum=0;
for(IntWritable value:values) {
sum+=value.get();
}
v.set(sum);
context.write(key, v);
}
}

在run configuration里加上参数e:/mrtest/in.txt e:/mrtest/out.txt

运行时遇到了个bug,参考https://blog.csdn.net/qq_40310148/article/details/86617512解决了

在集群上运行:

用maven打成jar包,需要添加一些打包依赖:

	<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin </artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>com.mcq.WordcountDriver</mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

注意上面mainClass里要填驱动类的主类名,可以点击类名右键copy qualified name。

将程序打成jar包(具体操作:右键工程名run as maven install,然后target文件夹会产生两个jar包,我们把不用依赖的包拷贝到hadoop集群上,因为集群已经配好相关依赖了),上传到集群

输入以下命令运行

hadoop jar mr-1101-0.0.1-SNAPSHOT.jar com.mcq.WordcountDriver /xiaocao.txt /output

注意这里输入输出的路径是集群上的路径。

Java实现MapReduce Wordcount案例的更多相关文章

  1. MapReduce简单执行过程及Wordcount案例

    MapReducer运行过程 以单词统计为案例. 假如现在文件中存在如下内容: aa bb aa cc dd aa 当然,这是小文件,如果文件大小较大时会将文件进行 "切片" ,此 ...

  2. Java编程MapReduce实现WordCount

    Java编程MapReduce实现WordCount 1.编写Mapper package net.toocruel.yarn.mapreduce.wordcount; import org.apac ...

  3. 大数据学习day18----第三阶段spark01--------0.前言(分布式运算框架的核心思想,MR与Spark的比较,spark可以怎么运行,spark提交到spark集群的方式)1. spark(standalone模式)的安装 2. Spark各个角色的功能 3.SparkShell的使用,spark编程入门(wordcount案例)

    0.前言 0.1  分布式运算框架的核心思想(此处以MR运行在yarn上为例)  提交job时,resourcemanager(图中写成了master)会根据数据的量以及工作的复杂度,解析工作量,从而 ...

  4. HADOOP :: java.lang.ClassNotFoundException: WordCount

    I am using eclipse to export the jar file of a map-reduce program. When i am run the jar using comma ...

  5. Python实现MapReduce,wordcount实例,MapReduce实现两表的Join

    Python实现MapReduce 下面使用mapreduce模式实现了一个简单的统计日志中单词出现次数的程序: from functools import reduce from multiproc ...

  6. win10+eclipse+hadoop2.7.2+maven+local模式直接通过Run as Java Application运行wordcount

    一.准备工作 (1)Hadoop2.7.2 在linux部署完毕,成功启动dfs和yarn,通过jps查看,进程都存在 (2)安装maven 二.最终效果 在windows系统中,直接通过Run as ...

  7. MapReduce WordCount Combiner程序

    MapReduce WordCount Combiner程序 注意使用Combiner之后的累加情况是不同的: pom.xml <project xmlns="http://maven ...

  8. [b0013] Hadoop 版hello word mapreduce wordcount 运行(三)

    目的: 不用任何IDE,直接在linux 下输入代码.调试执行 环境: Linux  Ubuntu Hadoop 2.6.4 相关: [b0012] Hadoop 版hello word mapred ...

  9. [b0012] Hadoop 版hello word mapreduce wordcount 运行(二)

    目的: 学习Hadoop mapreduce 开发环境eclipse windows下的搭建 环境: Winows 7 64 eclipse 直接连接hadoop运行的环境已经搭建好,结果输出到ecl ...

随机推荐

  1. easyUI+servlet+mysql项目总结

    项目介绍 利用easyUI做前端框架,进行数据展示和用户数据收集 使用servlet做后端的控制层,并调用业务逻辑组件的业务逻辑方法,处理用户请求,根据不同处理结果返回不同的结果到前端 mysql进行 ...

  2. 快速掌握Docker必备基础知识

    快速掌握Docker必备基础知识 Docker是时下热门的容器技术,相信作为一名开发人员,你一定听说过或者使用过,很多人会把Docker理解为一个轻量级虚拟机,但其实Docker与虚拟机(VM)是两种 ...

  3. ORACLE DATAGUARD 日志传输状态监控

    ORACLE DATAGUARD的主备库同步,主要是依靠日志传输到备库,备库应用日志或归档来实现.当主.备库间日志传输出现GAP,备库将不再与主库同步.因此需对日志传输状态进行监控,确保主.备库间日志 ...

  4. Centos下YUM源配置及相关问题应用篇

    yum源配置在工作中会经常用到,特别是安装数据库时,一个个去安装依赖包比较耗时,直接配置好yum安装即可. (特别提醒:redhat有时会提示系统未注册,要求你注册,这个只对需要连接公网的yum源产生 ...

  5. Linux防火墙firewall和iptables的使用

    防火墙是整个数据包进入主机前的第一道关卡. Linux中有两种防火墙软件,ConterOS 7.0以上使用的是 firewall,ConterOS 7.0以下使用的是 iptables,本文将分别介绍 ...

  6. java8-07-方法引用总结

    一:方法引用                     如果Lambda体中的内容  已经有方法实现了 我们可以使用"方法引用"                     (可以理解为 ...

  7. Comet OJ - Contest #8

    Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...

  8. python接口测试:如何将A接口的返回值传递给B接口

    在编写接口测试脚本时,要考虑一个问题:参数值从哪里获取 一种方式是可以通过数据库来获取,但是通过这次接口测试,我发现读取数据库有一个缺点:速度慢 可能和我的sql写法有关,有些sql加的约束条件比较少 ...

  9. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心

    D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...

  10. 【2016NOI十连赛2-2】黑暗

    [2016NOI十连赛2-2]黑暗 题目大意:定义一个无向图的权值为连通块个数的\(m\)次方.求\(n\)个点的所有无向图的权值和.多次询问. 数据范围:\(T\leq 1000,n\leq 300 ...