HDU 6134
题意略。
思路:
我们先不考虑[(i , j) == 1],在此情况下,其实这个值是sum( [ (i , j) == 1,2,3,....,n ] ) 这些情况。我们要求的仅仅是其中的第一部分而已。也即:
F(1) = f(1) + f(2) + f(3) + .... + f(n)。[1,2,3,....,n 是1的整数倍]
在这里,我们令 g(i) 为 i / 1 + i / 2 + .... + i / i 向下取整之和。令 G(i) 为 左式向上取整之和,我们有一个递推公式:
g(i) = G(i) - i + cnt[i] G(i) = g(i - 1) + i
其中cnt[i]记录的是 i 的因子个数。
我们要想求出在 n 条件下的 F(1),则F(1) = G(1) + G(2) + ... + G(n)。这个我们可以用一个sum预先存下前缀和。而F(2) = G(2) + G(4) + ...
也即G(1) + G(2) + ... + G(n / 2)。
这里可以用莫比乌斯反演。
但是如果每个询问都从1~n这样计算反演,那么由于样例太多,会超时。那么我们可以考虑加一个sqrt(n)的优化。
详见代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL maxn = ;
const LL mod = 1e9 + ; LL F[maxn],f[maxn],cnt[maxn],sum[maxn];
LL n;
bool check[maxn];
LL prime[maxn],mu[maxn];
LL sum_mu[maxn]; void mobius(){
memset(check,false,sizeof(check));
mu[] = ;
sum_mu[] = ;
int tot = ;
for(LL i = ;i < maxn;++i){
if(!check[i]){
prime[tot++] = i;
mu[i] = -;
}
for(int j = ;j < tot;++j){
if(i * prime[j] > maxn) break;
check[i * prime[j]] = true;
if(i % prime[j] == ){
mu[i * prime[j]] = ;
break;
}
else mu[i * prime[j]] = -mu[i];
}
sum_mu[i] = mu[i] + sum_mu[i - ];
}
}
void init(){
for(LL i = ;i < maxn;++i){
for(LL j = ;i * j < maxn;++j){
++cnt[i * j];
}
}
f[] = F[] = ;
for(LL i = ;i < maxn;++i){
F[i] = f[i - ] + i;
F[i] %= mod;
f[i] = (F[i] - i + cnt[i] + mod) % mod;
}
for(int i = ;i < maxn;++i){
sum[i] = F[i] + sum[i - ];
}
} int main(){
init();
mobius();
while(scanf("%lld",&n) == ){
LL ans = ;
LL last = ;
for(LL i = ;i <= n;i = last + ){
last = n / (n / i);
ans += (sum_mu[last] - sum_mu[i - ]) * sum[n / i];
ans = (ans + mod) % mod;
//printf("sum[%d / %d] == %lld\n",n,i,sum[n / i]);
}
printf("%lld\n",ans);
}
return ;
}
HDU 6134的更多相关文章
- HDU 6134 Battlestation Operational(莫比乌斯反演)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6134 [题目大意] 求$\sum_{i=1}^{n}{\sum_{j=1}^{i}\lceil{\ ...
- 2017多校第8场 HDU 6134 Battlestation Operational 莫比乌斯反演
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6134 题意: 解法: 那么g(n)怎么求,我们尝试打表发现g(n)是有规律的,g(n)=g(n-1)+ ...
- hdu 6134 Battlestation Operational 莫比乌斯反演
Battlestation Operational Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)
题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...
- HDU 6134 Battlestation Operational | 2017 Multi-University Training Contest 8
破结论没听说过,上式推导到第三步的时候有了O(nlogn) 的做法(枚举倍数+1最后前缀和),并且这种做法可以直接应用到向上取整的计算中,详见forever97 但由于d(n)是积性函数,故可O(n) ...
- hdu 6134: Battlestation Operational (2017 多校第八场 1002)【莫比乌斯】
题目链接 比赛时没抓住重点,对那个受限制的“分数求和”太过关心了..其实如果先利用莫比乌斯函数的一个性质把后面那个[gcd(i,j)=1]去掉,那么问题就可以简化很多.公式如下 这和之前做过的一道题很 ...
- hdu 6134 Battlestation Operational (莫比乌斯反演+埃式筛)
Problem Description > The Death Star, known officially as the DS-1 Orbital Battle Station, also ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
随机推荐
- python包-logging-hashlib-openpyxl模块-深浅拷贝-04
包 包: # 包是一系列模块文件的结合体,表现形式是文件夹,该文件夹内部通常会包含一个__init__.py文件,本质上还是一个模块 包呢,就是前两篇博客中提到的,模块的四种表现形式中的第三种 # 把 ...
- 【git】Github上面的开源代码怎么在本地编译运行
最近才发现Github是一个好东西,可以从上面学到很多东西,不说了,赶快写完去学习去... 1.首先你可以看看这个开源项目的README.md,一般一般这里都会有项目的使用方式以及一些注意的点 2.你 ...
- github项目readme.md文件如何编写
参考链接:http://blog.csdn.net/Bone_ACE/article/details/48318675
- lr参数化
为什么做参数化? 数据库校验:注册用户时会看数据库有没有这个账号 应用程序校验:pc端qq登陆,一个账号只能登陆一台电脑 1.数据库或应用程序提交值的唯一性校验 数据库查询过程: 1.语法检查.语义检 ...
- the license has been canceled
ideal 的 注册码并没有失效,却显示这个信息 the license has been canceled 如果用的是Windows系统,在hosts文件添加下边的ip及映射 0.0.0.0 acc ...
- 绿色版的mysql 下载安装配置方式
解压下载好的压缩包 下载地址 mysql-5.6.26-win64 绿色版 copy 一份my-default.ini改名字为my.ini为mysql的配置文件 打开my.ini 修改配置文件 默认的 ...
- 章节十五、3-对象仓库、Page Factory实例应用
一.如何创建对象仓库 package pageclasses; import org.openqa.selenium.WebDriver; import org.openqa.selenium.Web ...
- 【iOS】iOS CocoaPods 整理
github 上下载 Demo 时第一次遇到这个情况,当时有些不知所措,也没怎么在意,后来项目调整结构时正式见到了这个,并且自己去了解学习了. CocoaPods安装和使用教程 这篇文章写得很好!ma ...
- 关于定时器Scheduled(cron)的问题
定时器配置步骤参考:http://blog.csdn.NET/sd4000784/article/details/7745947 下面给出cron参数中各个参数的含义: CRON表达式 含义 & ...
- Confluence未授权模板注入/代码执行(CVE-2019-3396)
--- title: Confluence未授权模板注入/代码执行(CVE-2019-3396) tags: [poc,cve] num :g7y12 --- # 简介 --- Confluence是 ...