往期回顾

100天搞定机器学习|(Day1-36)

100天搞定机器学习|Day37无公式理解反向传播算法之精髓

上集我们学习了反向传播算法的原理,今天我们深入讲解其中的微积分理论,展示在机器学习中,怎么理解链式法则。

我们从一个最简单的网络讲起,每层只有一个神经元,图上这个网络就是由三个权重和三个偏置决定的,我们的目标是理解代价函数对这些变量有多敏感。这样我们就知道怎么调整这些变量,才能使代价函数下降的最快。

我们先来关注最后两个神经元,我们给最后一个神经元一个上标L,表示它处在第L层。给定一个训练样本,我们把这个最终层激活值要接近的目标叫做y,y的值为0/1。那么这个简易网络对于单个训练样本的代价就等于(a(L)−y)2。对于这个样本,我们把这个代价值标记为C0。

之前讲过,最终层的激活值公式:

换个标记方法:

整个流程就是这样的:

当然了,a(L−1)还可以再向上推一层,不过这不重要。

这些东西都是数字,我们可以想象,每个数字都对应数轴上的一个位置。我们第一个目标是来理解代价函数对权重

的微小变化有多敏感。换句话说,求C0对

的导数。 的微小变化导致 产生变化,然后导致 ,最终影响到cost。

我们把式子拆开,首先求 的变化量比 的变化量,即 关于 的导数;同力考虑 变化量比 的变化量,以及最终的c的变化量比上直接改动 产生的变化量。

这就是链式法则

开始分别求导

这只是包含一个训练样本的代价对 的导数,
总的代价函数是所有训练样本代价的总平均,它对 的导数就要求出这个表达式对每一个训练样本的平均,

这只是梯度向量的一个分量,梯度由代价函数对每一个权重和偏置求导数构成。

当然了,对偏置求导数也是同样的步骤。只要把 替换成

同样的,这里也有反向传播的思想

到此,我们可以方向应用链式法则,来计算代价函数对之前的权重和偏置的敏感程度

到这里,我们可以看每层不止一个神经元的情况了,其实并不复杂太多,只是多写一些下标罢了。

这些方程式和之前每层只有一个神经元的时候本质上一样的

代价函数也类似

不同的是代价函数对(L-1)层激活值的导数
因为此时,激活值可以通过不同的途径影响cost function,

只要计算出倒数第二层代价函数对激活值的敏感度,接下来重复上述过程就行了。至此,反向传播介绍完毕。

100天搞定机器学习|day38 反向传播算法推导的更多相关文章

  1. 100天搞定机器学习|day37 无公式理解反向传播算法之精髓

     100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦 ...

  2. 100天搞定机器学习|Day7 K-NN

    最近事情无比之多,换了工作.组队参加了一个比赛.和朋友搞了一些小项目,公号荒废许久.坚持是多么重要,又是多么艰难,目前事情都告一段落,我们继续100天搞定机器学习系列.想要继续做这个是因为,一方面在具 ...

  3. 100天搞定机器学习|Day11 实现KNN

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  4. 100天搞定机器学习|Day8 逻辑回归的数学原理

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  5. 100天搞定机器学习|Day9-12 支持向量机

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  6. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  7. 100天搞定机器学习|Day17-18 神奇的逻辑回归

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  8. 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  9. 100天搞定机器学习|Day21 Beautiful Soup

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

随机推荐

  1. Redis+Twemproxy分片存储实现

    from unsplash 为提高Redis存储能力的提升,以及对外提供服务可用性提升,有时候有必要针对Redis进行集群式搭建,比较常用的有Twemproxy分片存储以及官方提供的Cluster方式 ...

  2. Spring中@value以及属性注入的学习

    1.简单的Java配置 配置文件(jdbc.properties) jdbc.driverClassName=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://1 ...

  3. springcloud-注册中心快速构建

    1. 场景描述 springcloud提供了一整套可行的构建分布式系统的方案,使的企业/开发人员能够快速沟通分布式系统,今天快速构建下springcloud的注册中心Eureka. 2. 解决方案 2 ...

  4. STM32F0_HAL库驱动描述——基于F1的USART串口IT中断实现解析

    从原子F103 HAL库基础串口例程来看HAL程序结构: 从main函数开始,首先是HAL库两个函数的初始化: HAL_Init(): Stm32_Clock_Init(RCC_PLL_MUL9); ...

  5. Spring Cloud Alibaba | Sentinel: 服务限流高级篇

    目录 Spring Cloud Alibaba | Sentinel: 服务限流高级篇 1. 熔断降级 1.1 降级策略 2. 热点参数限流 2.1 项目依赖 2.2 热点参数规则 3. 系统自适应限 ...

  6. mongo去重统计

    表名:parkUserCost id: patkId: userId: phone: costVal: 适合特定条件下,对某些字段进行去重筛选.(比如限定抢购) 第一种,使用\(first操作符.\) ...

  7. Linux中的update和upgrade的作用

    update 是同步 /etc/apt/sources.list 和 /etc/apt/sources.list.d 中列出的源的索引,这样才能获取到最新的软件包.update是下载源里面的metad ...

  8. 微信小程序踩坑日记2——实时访问数据库并渲染UI

    0. 引言 主要讲讲对于实时访问数据库并渲染UI我的解决方法. 一开始查到了随让小程序是单线程的,但是有一个基本上是封装的worker线程,相当于可以自己自定义(类似于Android开发里的handl ...

  9. Python基础之变量,常量,注释,数据类型

    由于上学期学了C语言,对于这一块的内容肯定算熟悉,只是注释的方法有些不同,但得还是一步一步的来!没有基础的同学看了这篇随笔也会大有助益的! 什么是变量?所谓变量就是将一些运算的中间结果暂存到内存中,以 ...

  10. web前端开发-博客目录

    web前端开发是一个新的领域,知识连接范围广,处于设计与后端数据交互的桥梁,并且现在很多web前端相关语言标准,框架库都在高速发展.在学习过程中也常常处于烦躁与迷茫,有时候一直在想如何能够使自己更加系 ...