100天搞定机器学习|day38 反向传播算法推导
往期回顾


100天搞定机器学习|Day37无公式理解反向传播算法之精髓
上集我们学习了反向传播算法的原理,今天我们深入讲解其中的微积分理论,展示在机器学习中,怎么理解链式法则。

我们从一个最简单的网络讲起,每层只有一个神经元,图上这个网络就是由三个权重和三个偏置决定的,我们的目标是理解代价函数对这些变量有多敏感。这样我们就知道怎么调整这些变量,才能使代价函数下降的最快。

我们先来关注最后两个神经元,我们给最后一个神经元一个上标L,表示它处在第L层。给定一个训练样本,我们把这个最终层激活值要接近的目标叫做y,y的值为0/1。那么这个简易网络对于单个训练样本的代价就等于(a(L)−y)2。对于这个样本,我们把这个代价值标记为C0。

之前讲过,最终层的激活值公式:

换个标记方法:

整个流程就是这样的:

当然了,a(L−1)还可以再向上推一层,不过这不重要。

这些东西都是数字,我们可以想象,每个数字都对应数轴上的一个位置。我们第一个目标是来理解代价函数对权重
的微小变化有多敏感。换句话说,求C0对
的导数。
的微小变化导致
产生变化,然后导致
,最终影响到cost。

我们把式子拆开,首先求
的变化量比
的变化量,即
关于
的导数;同力考虑
变化量比
的变化量,以及最终的c的变化量比上直接改动
产生的变化量。
这就是链式法则

开始分别求导


这只是包含一个训练样本的代价对
的导数,
总的代价函数是所有训练样本代价的总平均,它对
的导数就要求出这个表达式对每一个训练样本的平均,

这只是梯度向量的一个分量,梯度由代价函数对每一个权重和偏置求导数构成。

当然了,对偏置求导数也是同样的步骤。只要把
替换成

同样的,这里也有反向传播的思想

到此,我们可以方向应用链式法则,来计算代价函数对之前的权重和偏置的敏感程度

到这里,我们可以看每层不止一个神经元的情况了,其实并不复杂太多,只是多写一些下标罢了。

这些方程式和之前每层只有一个神经元的时候本质上一样的

代价函数也类似

不同的是代价函数对(L-1)层激活值的导数
因为此时,激活值可以通过不同的途径影响cost function,

只要计算出倒数第二层代价函数对激活值的敏感度,接下来重复上述过程就行了。至此,反向传播介绍完毕。

100天搞定机器学习|day38 反向传播算法推导的更多相关文章
- 100天搞定机器学习|day37 无公式理解反向传播算法之精髓
100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦 ...
- 100天搞定机器学习|Day7 K-NN
最近事情无比之多,换了工作.组队参加了一个比赛.和朋友搞了一些小项目,公号荒废许久.坚持是多么重要,又是多么艰难,目前事情都告一段落,我们继续100天搞定机器学习系列.想要继续做这个是因为,一方面在具 ...
- 100天搞定机器学习|Day11 实现KNN
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day8 逻辑回归的数学原理
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day9-12 支持向量机
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day16 通过内核技巧实现SVM
前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...
- 100天搞定机器学习|Day17-18 神奇的逻辑回归
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 100天搞定机器学习|Day21 Beautiful Soup
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
随机推荐
- Java编程思想:File类其他方法
import java.io.File; public class Test { public static void main(String[] args) { MakeDirectories.te ...
- Linux磁盘与分区
正在从新装载虚拟机,碰到磁盘分区一阵头大,花了一下午对分区的基本原理做了一个梳理 一.磁盘 硬盘内部结构:
- 【基础算法模拟+例题】-C++
在漫长的刷题练习过程中,几乎所有稍微熟练一点的OIer都会,但是都几乎没有经过系统的学习,今天,我们就来讲讲模拟算法,也是为了复习emm. 定义? 定义?模拟还有什么定义吗? 那什么是模拟呢? 就是按 ...
- [笨方法学python]习题51自动化测试笔记
习题51 本节自动化测试部分看不大懂,自己每步都打印出来,帮助理解.(代码标红部分为自己加入调试为打印变量值所用) tests/tools.py from nose.tools import * im ...
- 个人永久性免费-Excel催化剂功能第70波-工作薄外部链接维护管理
Excel在数据领域万物互联的特性,其中一个使用场景是连接非本工作薄的外部性文件内容,如其他Excel工作薄文件里的内容或直接用OLE对象的方式嵌入一个文件链接,使其在不离开Excel环境,也可提供类 ...
- C#3.0新增功能05 分部方法
连载目录 [已更新最新开发文章,点击查看详细] 分部类或结构可以包含分部方法. 类的一个部分包含方法的签名. 可以在同一部分或另一个部分中定义可选实现. 如果未提供该实现,则会在编译时删除 ...
- Java、Java SE、Java Web和Java EE的区别
刚接触Java对这些概念上的东西有点模糊,查了很多资料,想把它分享出来,要是哪里不对请大家指正(^_^) 1.Java 毫无疑问这就是门语言和C.C++.C#一样没什么好说的. 2.Java SE和J ...
- luogu题解 P5022 【旅行】
本人的代码可以说洛谷最简单的了 我的存图方式有些与众不同 a[5000][5000]中第一个下标表示第几个点,第二个表示与点相连的点 虽然比前向星废内存但时间极快,大概是O(n)的. 现在步入正题 6 ...
- Supalle-Admin-Layout,一个PC端和手机端都合适用的后台页面模板
Supalle-Admin-Layout主要使用有Vue.Element-UI.layui-icon,Ajax实现采用Fetch(是有这个打算,不过目前是jQuery.). 源码地址:https:// ...
- cookbook_元编程
1给函数添加一个包装 问题:给函数加一个外包装层,已添加额外的处理,例如,记录日志,计时统计等 解决方案:可以定义一个装饰器来包装函数 2编写装饰器时如何保存函数的元数据 问题:当一个函数被装饰器装饰 ...