1.对偶问题的推导

为什么要求解对偶问题?一是对偶问题往往更容易求解,二是可以自然的引入核函数。

1.1 用拉格朗日函数将原问题转化为“无约束”等价问题

原问题是:

写出它的拉格朗日函数:

然后我们的原问题就等价为:

为什么可以这样等价:

即:对于不满足约束条件的(b,w),min里面趋于无穷大,因此min就把这些b,w舍去了;对于满足约束条件的解,min里面就刚好是原来的目标函数,刚好与原问题等价。

1.2 导出拉格朗日对偶问题

首先我们有如下成立:

然后我们取右边式子中的“best”阿尔法,仍然会有大于等于号成立,因为best is one of any:

这时右边的式子就是对偶问题。这里直接给出一个定理,当满足下面条件时(对于SVM来说刚好满足),原始问题和对偶问题的解是相同的:

并且它们的最优解满足KKT条件:偏导为0,对偶互补,拉格朗日乘子大于0.

1.3 用KKT条件来简化对偶问题

我们的对偶问题现在是:

根据KKT条件,我们有:

把第一个代进来:

再把第二个代进来:

这时候,我们的问题里面就只剩一个参数阿尔法了。再把平方项展开,写的好看一点,就得到了标准的硬间隔SVM对偶问题:

2. 解对偶问题

还是解QP那一套:

之后再求W和b:

(所有支持向量的加权和)

(任取一个支持向量算出)

3. 支持向量

引出对偶问题后,我们重现定义支持向量为阿尔法大于0的向量。他们一定是在边界上的(统计学习方法p107),但是在边界上的不一定阿尔法大于0:

前面我们也提到过,w和b的计算只需要支持向量,其他向量都是无用的:

《机器学习技法》---对偶SVM的更多相关文章

  1. 对偶SVM

    1.对偶问题的推导 为什么要求解对偶问题?一是对偶问题往往更容易求解,二是可以自然的引入核函数. 1.1 用拉格朗日函数将原问题转化为"无约束"等价问题 原问题是: 写出它的拉格朗 ...

  2. SVM原理与实践

    SVM迅速发展和完善,在解决小样本.非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.从此迅速的发展起来,已经在许多领域(生物信息学,文本和手写识别等)都取 ...

  3. SVM1 线性SVM

    一.Linear Support Vector Machine 接下来的讨论假设数据都是线性可分的. 1.1 SVM的引入:增大对测量误差的容忍度 假设有训练数据和分类曲线如下图所示: 很明显,三个分 ...

  4. SVM学习笔记

    一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...

  5. SVM对偶形式

    dual svm 对偶SVM linear SVM 可以用二次规划方法解 xn通过非线性转换变成zn SVM配合非线性特征转换 透过large-margin降低模型复杂度 透过特征转换得到弯弯曲曲的边 ...

  6. SVM笔记

    1.前言 SVM(Support Vector Machine)是一种寻求最大分类间隔的机器学习方法,广泛应用于各个领域,许多人把SVM当做首选方法,它也被称之为最优分类器,这是为什么呢?这篇文章将系 ...

  7. 【机器学习算法基础+实战系列】SVM

    概述 支持向量机是一种二分类模型,间隔最大使它有别于感知机.支持向量机学习方法由简至繁的模型:线性可分支持向量机(linear support vector machine in linearly s ...

  8. SVM小白教程(2):拉格朗日对偶

    在上一篇文章中,我们推导出了 SVM 的目标函数: \[ \underset{(\mathbf{w},b)}{\operatorname{min}} ||\mathbf{w}|| \\ \operat ...

  9. SVM系列之拉格朗日对偶

    在学习SVM(Support Vector Machine) 支持向量机时,对于线性可分的分类样本求出的分类函数为: 其中,分类超平面可以表示为:

随机推荐

  1. Linux操作系统下文件作用

    linux下的文件结构,看看每个文件夹都是干吗用的 /bin 二进制可执行命令 /dev 设备特殊文件 /etc 系统管理和配置文件 /etc/rc.d 启动的配置文件和脚本 /home 用户主目录的 ...

  2. Socket编程(C语言实现):socket()函数英文翻译

    最近开始研究使用Socket API来网络编程,想着把自己的感想.感悟写下来.我发现在编程之外还有不少概念性的东西要学习.我觉得应该有以下几点吧: 1.得了解下计算机网络的基本概念,如OSI的7层模型 ...

  3. 提升布局性能____Re-using Layouts with <include/>

    可以再一个布局中通过"include"和"merge"元素进行复用其他的布局元素. 比如如下一个布局: <FrameLayout xmlns:androi ...

  4. weex起步

    weex文档地址: http://weex-project.io/cn/guide/index.html weex的文档过于简单,加上js语法 & android & ios本身也有很 ...

  5. 数据挖掘之KMeans算法应用与简单理解

    一.背景 煤矿地磅产生了一系列数据: 我想从这些数据中,取出最能反映当前车辆重量的数据(有很多数据是车辆上磅过程中产生的数据).我于是想到了聚类算法KMeans,该算法思想比较简单. 二.算法步骤 1 ...

  6. Java类方法重载与重写

    目录 - 方法重载 - 方法重写 @(Java类方法重载与重写) - 方法重载 1.方法名相同 2.参数列表不同 public void person(double height,double wei ...

  7. 负载分配—DNS的域名解析

    DNS(Domain Name System)是因特网的一项服务,它作为域名和IP地址相互映射的一个分布式数据库,能够使人更方便的访问互联网.人们在通过浏览器访问网站时只需要记住网站的域名即可,而不需 ...

  8. Initialization failed for 'https://start.spring.io' Please check URL

    错误描述:Initialization failed for 'https://start.spring.io' Please check URL, network and proxy setting ...

  9. &= 的含义

    这是一个缩略式子,展开之后的结果是a = a & b;&是按位与的操作符. 按位与运算:参加运算的两个数据,按二进位进行“与”运算.如果两个相应的二进位都为1,则该位的结果值为1,否则 ...

  10. Java8中的流操作-基本使用&性能测试

    为获得更好的阅读体验,请访问原文:传送门 一.流(Stream)简介 流是 Java8 中 API 的新成员,它允许你以声明式的方式处理数据集合(通过查询语句来表达,而不是临时编写一个实现).这有点儿 ...