【BZOJ1921】【CTSC2010】珠宝商(点分治,后缀自动机)

题面

洛谷
BZOJ权限题

题解

如果要我们做暴力,显然可以以某个点为根节点,然后把子树\(dfs\)一遍,建出特征串的\(SAM\),就可以直接计算出现次数了。复杂度是\(O(size^2)\)
另外一种暴力是我们枚举以某个点为中心,考虑在其两棵不同子树内各选择一条链,然后拼接在一起计算答案。我们假设选择了\(R\)为中心,然后有一条\((u\rightarrow R)\)的链,有一条\((R\rightarrow v)\)的链,我们把\((u\rightarrow R)\)这个串在每个匹配到的结尾位置打上一个标记,把\((R\rightarrow v)\)这个串在每个被匹配到的开头位置打上一个标记,于是我们就只需要把每个位置的左右两个标记乘起来就是答案了。
然后考虑怎么打这个标记,对于在开头位置打标记,显然是匹配上了一个后缀的前缀,那么我们把后缀树建出来,因为每一个后缀上的一个叶子节点对应着一个后缀,这样子我们只要在后缀树上找到这个串匹配的节点,然后其子树的所有叶子节点对应的后缀的开头位置都要\(+1\),于是子树加可以变成在后缀树上的匹配点单点加,最后一次\(dfs\)一次后缀树就好了。类似的,在结尾位置打标记就是在前缀的一段后缀打标记,那么建出前缀树就行了。于是我们就可以做到\(O(m+size)\),其中\(m\)是特征串的长度。但是这样子会出现\(R\)的相同子树里的一个从上往下的串和一个从下往上的串进行了匹配,于是我们还要对于每一个子树进行去除。
现在有了这两种复杂度不同的做法,显然我们可以按照\(B=\sqrt m\)来分类讨论,对于\(size\le B\)直接\(O(size^2)\)暴力,否则对应下面这种的\(O(m+size)\)的做法,注意对于容斥减去相同子树内的贡献的时候,也需要考虑使用两种对应的方法,否则复杂度是假的。
upd:
补一下关于复杂度的证明:
对于第一类暴力,单次是\(O(size^2)\)的,因为这样处理完之后所有子树的答案已经贡献完毕,可以直接返回,所以只需要在分治子树大小第一次小于\(B\)的时候统计答案,然后因为所有这样的子树两两不交,所以\(\sum size\)是不会超过\(n\)的,而\(\sum size^2\le \frac{n}{B}B^2=nB\),所以这一部分的复杂度是\(O(nB)\)的。
对于第二类暴力,我们考虑\(size\gt B\)的分治重心的个数,根据点分治的性质,没有子树的\(size\)会大于父亲的一半,所以每次向上至少要合并两个\(size\gt B\)的分治子树,而这样子的子树不会超过$ \frac{n}{B}\(个,所以向上合并的次数不会超过\)\frac{n}{B}$次,所以这样子的分治重心的个数不会超过\(2\frac{n}{B}\),而这样子单次复杂度是\(O(size+m)\),所以这部分的总复杂度是\(O(\frac{n}{B}m)\)。
综上\(\frac{n}{B}m=nB\),即\(B=\sqrt m\)的时候复杂度最优,为\(O((n+m)\sqrt m)\)。


代码被我咕咕咕了怎么办......

【BZOJ1921】【CTSC2010】珠宝商(点分治,后缀自动机)的更多相关文章

  1. [BZOJ1921] [CTSC2010]珠宝商

    Description Input 第一行包含两个整数 N,M,表示城市个数及特征项链的长度. 接下来的N-1 行, 每行两个整数 x,y, 表示城市 x 与城市 y 有直接道路相连.城市由1~N进行 ...

  2. [CTSC2010]珠宝商 SAM+后缀树+点分治

    [CTSC2010]珠宝商 不错的题目 看似无法做,n<=5e4,8s,根号算法? 暴力一: n^2,+SAM上找匹配点的right集合sz,失配了直接退出 暴力二: O(m) 统计过lca=x ...

  3. [BJWC2018]Border 的四种求法(后缀自动机+链分治+线段树合并)

    题目描述 给一个小写字母字符串 S ,q 次询问每次给出 l,r ,求 s[l..r] 的 Border . Border: 对于给定的串 s ,最大的 i 使得 s[1..i] = s[|s|-i+ ...

  4. 【洛谷4482】Border的四种求法(后缀自动机_线段树合并_链分治)

    这题我写了一天后交了一发就过了我好兴奋啊啊啊啊啊啊 题目 洛谷 4482 分析 这题明明可以在线做的,为什么我见到的所有题解都是离线啊 -- 什么时候有机会出一个在线版本坑人. 题目的要求可以转化为求 ...

  5. CTSC2010 珠宝商

    珠宝商 题目描述 Louis.PS 是一名精明的珠宝商,他出售的项链构造独特,很大程度上是因为他的制作方法与众不同.每次 Louis.PS 到达某个国家后,他会选择一条路径去遍历该国的城市.在到达一个 ...

  6. [模板] 后缀自动机&&后缀树

    后缀自动机 后缀自动机是一种确定性有限状态自动机, 它可以接收字符串\(s\)的所有后缀. 构造, 性质 翻译自毛子俄罗斯神仙的博客, 讲的很好 后缀自动机详解 - DZYO的博客 - CSDN博客 ...

  7. P4218 [CTSC2010]珠宝商

    P4218 [CTSC2010]珠宝商 神题... 可以想到点分治,细节不写了... (学了个新姿势,sam可以在前面加字符 但是一次点分治只能做到\(O(m)\),考虑\(\sqrt n\)点分治, ...

  8. @bzoj - 1921@ [ctsc2010]珠宝商

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 简述版题意:给定字符串 S 与一棵树 T,树上每个点有一个字符. ...

  9. BZOJ 后缀自动机四·重复旋律7

    后缀自动机四·重复旋律7 时间限制:15000ms 单点时限:3000ms 内存限制:512MB 描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一段音乐旋律可以被表示为一段数构成的数列. 神奇的 ...

随机推荐

  1. CALL和RET指令实验

    实验10 1.在屏幕8行3列,用绿色显示data段中的字符串 assume cs:code data segment db data ends code segment start: ;行 ;列 ;颜 ...

  2. 使用webstrom开发小程序要做的设置

    1.关闭rpx的错误提示 在setting里面  -->搜索inspections --> 在右侧找到invalid CSS property value    把对勾划掉

  3. springboot 多环境

    springboot 多环境 --spring.profiles.active=dev 查看 Ioc 容器 PostProcessorRegistrationDelegate

  4. Python 教你识别淘宝刷单,买到称心如意的商品

    发际线堪忧的小 Q,为了守住头发最后的尊严,深入分析了几十款防脱洗发水的评价,最后综合选了一款他认为最完美的防脱洗发水. 一星期后,他没察觉到任何变化. 一个月后,他用卷尺量了量,发际线竟然后退了 0 ...

  5. IT兄弟连 HTML5教程 HTML5的基本语法 小结及习题

    小结 一个完整的HTML文件由标题.段落.列表.表格.文本,即嵌入的各种对象所组成,这些逻辑上统一的对象称为元素.HTML文档主体结构分为两部分,一部分是定义文档类型,另一部分则是定义文档主体的结构框 ...

  6. PAT 1006 Sign In and Sign Out 查找元素

    At the beginning of every day, the first person who signs in the computer room will unlock the door, ...

  7. .NET Core 实现 腾讯云云解析简单客户端

    一.说明 腾讯云的.NET SDK虽然非常强大,但是对他的产品支持不是很完全,域名的云解析就没有SDK,所以自己写了一个,初衷是用来做动态DNS的,也准备接入多个云厂商,但是我自己本身仅仅只有腾讯云这 ...

  8. Go初学乍练 - 安装以及开发环境搭建

    本文介绍主要以Windows作为开发系统环境 1.下载SDK 官方下载页:https://golang.org/dl/ 官方下载地址: 地址 类型 https://dl.google.com/go/g ...

  9. jwt认证生成后的token后端解析

    一.首先前端发送token token所在的位置headers {'authorization':token的值',Content-Type':application/json} 在ajax写 //只 ...

  10. Java入门——在Linux环境下安装JDK并配置环境变量

    Java入门——在Linux环境下安装JDK并配置环境变量 摘要:本文主要说明在Linux环境下JDK的安装,以及安装完成之后环境变量的配置. 使用已下载的压缩包进行安装 下载并解压 在Java的官网 ...