前言

Octave Convolution来自于这篇论文Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution这篇论文,该论文也被ICCV2019接收。

Octave表示的是音阶的八度,而本篇核心思想是通过对数据低频信息减半从而达到加速卷积运算的目的,而两个Octave之间也是声音频率减半【2】。

Octave Convolution(后面将以OctConv命名)主要有以下三个贡献:

  • 将卷积特征图分成了两组,一组低频,一组高频,低频特征图的大小会减半,从而可以有效减少存储以及计算量,另外,由于特征图大小减小,卷积核大小不变,感受野就变大了,可以抓取更多的上下文信息;
  • OctConv是一种即插即用的卷积块,可以直接替换传统的conv(也替换分组卷积以及深度可分离卷积等),减小内存和计算量;
  • 当然,作者做了大量实验,使用OctConv可以得到更高性能,甚至可以媲美best Auto ML。

总的来说,OctConv是占用内存小,速度快,性能高,即插即用的conv块。

OctConv的特征表示

自然图像可被分解为低频分量以及高频分量,如下所示:

而卷积层的特征图也可以分为低频和高频分量,如下图(b)所示,OctConv卷积的做法是将低频分量的空间分辨率减半(如下图c所示),然后分两组进行conv,两组频率之间会通过上采样和下采样进行信息交互(见下图d),最后再合成原始特征图大小。

作者认为低频分量在一些特征图中是富集的,可以被压缩的,所以对低频分量进行了压缩,压缩的方式没有采用stride conv,而是使用了average pooling,因为stride conv会导致不对齐的行为。

OctConv的详细过程

如上图所示,OctConv的输入有两部分,一部分是高频\(X^H\),另一部分是低频\(X^L\),观察到\(X^L\)的大小是\(X^H\)的二分之一,这里通过两个参数\(\alpha_{in}\)和\(\alpha_{out}\)来控制低高频的输入通道和输出通道,一开始,输入只有一个\(X\),这时候的\(\alpha_{in}\)为0,然后通过两个卷积层(\(f\left(X^{H} ; W^{H \rightarrow H}\right)\)和\(f\left(p o o l\left(X^{H}, 2\right) ; W^{H \rightarrow L}\right)\))得到高频分量和低频分量,中间的OctConv就是有两个输入了和两个输出,最后需要从两个输入恢复出一个输出,此时\(\alpha_{out}\)为0,通过\(f\left(X^{H} ; W^{H \rightarrow H}\right)\)和\(upsample\left(f\left(X^{L} ; W^{L \rightarrow H}\right), 2\right)\)两个操作得到单独输出。

现在来讨论上面的四根线上的操作各代表什么。

\(f\left(X^{H} ; W^{H \rightarrow H}\right)\)是高频信息到高频信息,通过一个卷积层即可。

\(f\left(p o o l\left(X^{H}, 2\right) ; W^{H \rightarrow L}\right)\)是将高频信息汇合到低频信息中,先通过一个平均池化,然后通过一个卷积层。

\(upsample\left(f\left(X^{L} ; W^{L \rightarrow H}\right), 2\right)\)是将低频信息汇合到高频信息,先通过一个卷积层,然后通过平均池化层。

\(f\left(X^{L} ; W^{L \rightarrow L}\right)\)是将低频信息到低频信息,通过一个卷积层。

现在看看卷积核参数分配的问题,如下图所示:

上面的四个操作对应上图的四个部分,可以看到总的参数依然是\(c_{i n} \times c_{o u t} \times k \times k\),但由于低频分量的尺寸减半,所需要的存储空间变小,以及计算量缩减,达到加速卷积的过程。

Pytorch代码

下面的代码来自于OctaveConv_pytorch ,代码可读性很高,如果理解了上述过程,看起来会很容易。

第一层OctConv卷积,将特征图x分为高频和低频:

class FirstOctaveConv(nn.Module):
def __init__(self, in_channels, out_channels,kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
groups=1, bias=False):
super(FirstOctaveConv, self).__init__()
self.stride = stride
kernel_size = kernel_size[0]
self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
self.h2l = torch.nn.Conv2d(in_channels, int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias)
self.h2h = torch.nn.Conv2d(in_channels, out_channels - int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias) def forward(self, x):
if self.stride ==2:
x = self.h2g_pool(x) X_h2l = self.h2g_pool(x)
X_h = x
X_h = self.h2h(X_h)
X_l = self.h2l(X_h2l) return X_h, X_l

中间层的OctConv,低高频输入,低高频输出:

class OctaveConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
groups=1, bias=False):
super(OctaveConv, self).__init__()
kernel_size = kernel_size[0]
self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')
self.stride = stride
self.l2l = torch.nn.Conv2d(int(alpha * in_channels), int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias)
self.l2h = torch.nn.Conv2d(int(alpha * in_channels), out_channels - int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias)
self.h2l = torch.nn.Conv2d(in_channels - int(alpha * in_channels), int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias)
self.h2h = torch.nn.Conv2d(in_channels - int(alpha * in_channels),
out_channels - int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias) def forward(self, x):
X_h, X_l = x if self.stride ==2:
X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l) X_h2l = self.h2g_pool(X_h) X_h2h = self.h2h(X_h)
X_l2h = self.l2h(X_l) X_l2l = self.l2l(X_l)
X_h2l = self.h2l(X_h2l) X_l2h = self.upsample(X_l2h)
X_h = X_l2h + X_h2h
X_l = X_h2l + X_l2l return X_h, X_l

最后一层的OctConv,将低高频汇合称输出。

class LastOctaveConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
groups=1, bias=False):
super(LastOctaveConv, self).__init__()
self.stride = stride
kernel_size = kernel_size[0]
self.h2g_pool = nn.AvgPool2d(kernel_size=(2,2), stride=2) self.l2h = torch.nn.Conv2d(int(alpha * in_channels), out_channels,
kernel_size, 1, padding, dilation, groups, bias)
self.h2h = torch.nn.Conv2d(in_channels - int(alpha * in_channels),
out_channels,
kernel_size, 1, padding, dilation, groups, bias)
self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest') def forward(self, x):
X_h, X_l = x if self.stride ==2:
X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l) X_l2h = self.l2h(X_l)
X_h2h = self.h2h(X_h)
X_l2h = self.upsample(X_l2h) X_h = X_h2h + X_l2h return X_h

参考

【1】 Octave Convolution论文

【2】Pytorch代码

【3】Octave Convolution博客

Octave Convolution详解的更多相关文章

  1. SIFT算法详解(转)

    http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature ...

  2. 【转】 SIFT算法详解

    尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com 对于初学者,从Davi ...

  3. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  4. 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”

    来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...

  5. 深度学习基础(CNN详解以及训练过程1)

    深度学习是一个框架,包含多个重要算法: Convolutional Neural Networks(CNN)卷积神经网络 AutoEncoder自动编码器 Sparse Coding稀疏编码 Rest ...

  6. SIFT算法详解

    尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com or (zddhub@ ...

  7. sift拟合详解

    1999年由David Lowe首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004年再次经David Lowe整 ...

  8. [转]CNN目标检测(一):Faster RCNN详解

    https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...

  9. Attention is all you need 论文详解(转)

    一.背景 自从Attention机制在提出之后,加入Attention的Seq2Seq模型在各个任务上都有了提升,所以现在的seq2seq模型指的都是结合rnn和attention的模型.传统的基于R ...

随机推荐

  1. <String> 161 358

    161. One Edit Distance 1. 两个字符串的长度之差大于1,直接返回False. 2. 两个字符串的长度之差等于1,长的那个字符串去掉一个字符,剩下的应该和短的字符串相同. 3. ...

  2. win10系统怎么设置软件开机启动

    win10开机自动启动软件设置教程: 1:在windows10桌面,右键点击桌面左下角的开始按钮,在弹出的菜单中选择运行菜单项. 2:这时就会打开windows10的运行窗口,在窗口中输入命令shel ...

  3. php 重复问题

    结果: 结论: 尽量在方法内用变量去接受重复的参数或重复的方法/结果,消耗的时间积少成多

  4. C sharp #006# 委托与事件

    饮水思源:金老师的自学网站 索引 委托(Delegate) Click事件探究 委托(Delegate) “不学会委托(Delegate),等于没学.NET编程!” 例程1-委托类型变量 using ...

  5. Java变量在内存中的存储

    目录 Java变量在内存中的存储 成员变量 局部变量 总结 Java变量在内存中的存储 以下探究成员变量和局部变量在内存中的存储情况. package com.my.pac04; /** * @aut ...

  6. JavaWeb中验证码校验的功能实现

    后台生成验证码工具方法 /* * 设置图片的背景色 */ public static void setBackGround(Graphics g, int WIDTH, int HEIGHT) { / ...

  7. PlayJava Day019

    今日所学: /* 2019.08.19开始学习,此为补档. */ 1.this: ①this是成员方法的一个特殊的固有的本地变量,它表达了调用这个方法的那个对象. ②在成员方法内部直接调用自己(thi ...

  8. Java操作数据库——手动实现数据库连接池

    Java操作数据库——手动实现数据库连接池 摘要:本文主要学习了如何手动实现一个数据库连接池,以及在这基础上的一些改进. 部分内容来自以下博客: https://blog.csdn.net/soonf ...

  9. 基于 Storyboard 多种方式的页面跳转、参数传递

    原文 通过按钮关联跳转 选中 Button ,然后点击 action 右边拖拽到 第二个页面 选择 "Show"即可完成跳转关联. 定义页面间 segue Id,通过代码触发跳转 ...

  10. 查找 oracle 数据库中包含某一字段的所有表的表名

    select table_name from DBA_TAB_COLUMNS where COLUMN_NAME='字段名'; 字段名需要大写