题意

考虑所求即为:\(G^{\sum\limits_{d|n}C_n^d}\%999911659\)。

发现系数很大,先用欧拉定理化简系数:\(G^{\sum\limits_{d|n}C_n^d\%999911658}\%999911659\)。

实际上我们只用求\(\sum\limits_{d|n}C_n^d\%999911658\),之后快速幂即可。

发现\(999911658\)不是个质数,没办法用Lucas定理求组合数,于是考虑拆开\(999911658\),发现为\(2,3,4679,35617\)。

于是对模意义下这四个数分别求\(\sum\limits_{d|n}C_n^d\),假设第\(i\)个求出的为\(a_i\)

发现我们得到了四个形如\(x\equiv a_i\pmod{p_i}\)的方程,用中国剩余定理合并即可得到答案(这其实就是exLucas的简化版)。

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod1=999911659;
const ll mod2=999911658;
const int maxs=40010;
ll n,m;
ll a[5],prime[]={0,2,3,4679,35617};
ll fac[maxs][5],inv[maxs][5];
inline ll power(ll x,ll k,ll mod)
{
ll res=1;
while(k)
{
if(k&1)res=res*x%mod;
x=x*x%mod;k>>=1;
}
return res;
}
inline ll C(ll n,ll m,ll op)
{
if(m>n)return 0;
return fac[n][op]*inv[n-m][op]%prime[op]*inv[m][op]%prime[op];
}
inline ll Lucas(ll n,ll m,ll op)
{
if(!m)return 1;
return C(n%prime[op],m%prime[op],op)*Lucas(n/prime[op],m/prime[op],op)%prime[op];
}
void exgcd(ll a,ll b,ll& x,ll& y)
{
if(!b){x=1,y=0;return;}
exgcd(b,a%b,x,y);
ll z=x;x=y,y=z-(a/b)*y;
}
inline ll CRT()
{
ll res=0;
for(int i=1;i<=4;i++)
{
ll x,y,M=mod2/prime[i];
exgcd(M,prime[i],x,y);
x=(x%prime[i]+prime[i])%prime[i];
res=(res+a[i]*x%mod2*M%mod2)%mod2;
}
return res;
}
int main()
{
scanf("%lld%lld",&n,&m);
if(m==mod1){puts("0");return 0;}
for(int i=1;i<=4;i++)
{
fac[0][i]=1;
for(int j=1;j<prime[i];j++)fac[j][i]=fac[j-1][i]*j%prime[i];
inv[prime[i]-1][i]=power(fac[prime[i]-1][i],prime[i]-2,prime[i]);
for(int j=prime[i]-1;j;j--)inv[j-1][i]=inv[j][i]*j%prime[i];
}
for(ll i=1;i*i<=n;i++)
{
if(n%i)continue;
for(int j=1;j<=4;j++)
{
a[j]=(a[j]+Lucas(n,i,j))%prime[j];
if(i*i!=n)a[j]=(a[j]+Lucas(n,n/i,j))%prime[j];
}
}
printf("%lld",power(m,CRT(),mod1));
return 0;
}

luoguP2480 [SDOI2010]古代猪文的更多相关文章

  1. BZOJ 1951: [Sdoi2010]古代猪文( 数论 )

    显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...

  2. 1951: [Sdoi2010]古代猪文

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2171  Solved: 904[Submit][Status] ...

  3. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  4. [SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)

    [SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k ...

  5. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  6. 【BZOJ1951】[SDOI2010]古代猪文

    [BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...

  7. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  8. 洛谷 P2480 [SDOI2010]古代猪文 解题报告

    P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...

  9. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

随机推荐

  1. Day6 - Python基础6 模块shelve、xml、re、subprocess、pymysql

    本节目录: 1.shelve模块 2.xml模块 3.re模块 4.subprocess模块 5.logging模块 6.pymysql 1.shelve 模块 shelve模块是一个简单的k,v将内 ...

  2. 验证登录的前世今生:session、cookie

    参考地址:彻底理解cookie,session,token 使用JSON Web Token设计单点登录系统 1.很久很久以前,Web 基本上就是文档的浏览而已, 既然是浏览,作为服务器, 不需要记录 ...

  3. day83_11_1 阿里配python使用。

    一.环境准备. 1.首先需要在支付包中注册开发者模式,并注册沙箱,模拟支付过程. https://openhome.alipay.com/platform/appDaily.htm?tab=info ...

  4. 转载:如何严格限制session在30分钟后过期!

    如何严格限制session在30分钟后过期!1.设置客户端cookie的lifetime为30分钟:2.设置session的最大存活周期也为30分钟:3.为每个session值加入时间戳,然后在程序调 ...

  5. WPF 精修篇 自定义控件

    原文:WPF 精修篇 自定义控件 自定义控件 因为没有办法对界面可视化编辑 所以用来很少 现在实现的是 自定义控件的 自定义属性 和自定义方法 用VS 创建自定义控件后 会自动创建 Themes 文件 ...

  6. 源码学习之Spring (系统架构简单解析)

    Spring Framework 系统架构总览图 Spring Framework的模块依赖关系图 Spring Framework各个模块功能说明 Spring核心模块 模块名称 主要功能 Spri ...

  7. Linux 部署vue项目(使用nginx)

    1.部署Nginx 请参考Linux下部署nginx,此处不再重复 2.Vue项目打包 # 打包正式环境 npm run build:prod # 打包预发布环境 npm run build:stag ...

  8. python学习(day1-2)

    python 学习(day - 1-2 ) 变量:将运算的中间结果暂存到内存,以便后续程序调⽤. 变量的命名规则: 1, 变量由字⺟, 数字,下划线搭配组合⽽成 2, 不可以⽤数字开头,更不能是全数字 ...

  9. C# windows服务,解决应用程序开机自启问题

    最近在东营做一个超市购物的项目,业务体量很小,是仅供内部员工使用的内网应用程序,其中涉及一个商品数据同步的winform应用程序,有一个问题就是服务器重启后,必须登录服务器操作系统,手动启动才行,于是 ...

  10. Java生鲜电商平台-秒杀系统微服务架构设计与源码解析实战

    Java生鲜电商平台-秒杀系统微服务架构设计与源码解析实战 Java生鲜电商平台-  什么是秒杀 通俗一点讲就是网络商家为促销等目的组织的网上限时抢购活动 比如说京东秒杀,就是一种定时定量秒杀,在规定 ...