luoguP2480 [SDOI2010]古代猪文
题意
考虑所求即为:\(G^{\sum\limits_{d|n}C_n^d}\%999911659\)。
发现系数很大,先用欧拉定理化简系数:\(G^{\sum\limits_{d|n}C_n^d\%999911658}\%999911659\)。
实际上我们只用求\(\sum\limits_{d|n}C_n^d\%999911658\),之后快速幂即可。
发现\(999911658\)不是个质数,没办法用Lucas定理求组合数,于是考虑拆开\(999911658\),发现为\(2,3,4679,35617\)。
于是对模意义下这四个数分别求\(\sum\limits_{d|n}C_n^d\),假设第\(i\)个求出的为\(a_i\)
发现我们得到了四个形如\(x\equiv a_i\pmod{p_i}\)的方程,用中国剩余定理合并即可得到答案(这其实就是exLucas的简化版)。
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod1=999911659;
const ll mod2=999911658;
const int maxs=40010;
ll n,m;
ll a[5],prime[]={0,2,3,4679,35617};
ll fac[maxs][5],inv[maxs][5];
inline ll power(ll x,ll k,ll mod)
{
ll res=1;
while(k)
{
if(k&1)res=res*x%mod;
x=x*x%mod;k>>=1;
}
return res;
}
inline ll C(ll n,ll m,ll op)
{
if(m>n)return 0;
return fac[n][op]*inv[n-m][op]%prime[op]*inv[m][op]%prime[op];
}
inline ll Lucas(ll n,ll m,ll op)
{
if(!m)return 1;
return C(n%prime[op],m%prime[op],op)*Lucas(n/prime[op],m/prime[op],op)%prime[op];
}
void exgcd(ll a,ll b,ll& x,ll& y)
{
if(!b){x=1,y=0;return;}
exgcd(b,a%b,x,y);
ll z=x;x=y,y=z-(a/b)*y;
}
inline ll CRT()
{
ll res=0;
for(int i=1;i<=4;i++)
{
ll x,y,M=mod2/prime[i];
exgcd(M,prime[i],x,y);
x=(x%prime[i]+prime[i])%prime[i];
res=(res+a[i]*x%mod2*M%mod2)%mod2;
}
return res;
}
int main()
{
scanf("%lld%lld",&n,&m);
if(m==mod1){puts("0");return 0;}
for(int i=1;i<=4;i++)
{
fac[0][i]=1;
for(int j=1;j<prime[i];j++)fac[j][i]=fac[j-1][i]*j%prime[i];
inv[prime[i]-1][i]=power(fac[prime[i]-1][i],prime[i]-2,prime[i]);
for(int j=prime[i]-1;j;j--)inv[j-1][i]=inv[j][i]*j%prime[i];
}
for(ll i=1;i*i<=n;i++)
{
if(n%i)continue;
for(int j=1;j<=4;j++)
{
a[j]=(a[j]+Lucas(n,i,j))%prime[j];
if(i*i!=n)a[j]=(a[j]+Lucas(n,n/i,j))%prime[j];
}
}
printf("%lld",power(m,CRT(),mod1));
return 0;
}
luoguP2480 [SDOI2010]古代猪文的更多相关文章
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- 1951: [Sdoi2010]古代猪文
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2171 Solved: 904[Submit][Status] ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- [SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)
[SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k ...
- 洛咕 P2480 [SDOI2010]古代猪文
洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...
- 【BZOJ1951】[SDOI2010]古代猪文
[BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...
- 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT
[BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...
- 洛谷 P2480 [SDOI2010]古代猪文 解题报告
P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
随机推荐
- Day6 - Python基础6 模块shelve、xml、re、subprocess、pymysql
本节目录: 1.shelve模块 2.xml模块 3.re模块 4.subprocess模块 5.logging模块 6.pymysql 1.shelve 模块 shelve模块是一个简单的k,v将内 ...
- 验证登录的前世今生:session、cookie
参考地址:彻底理解cookie,session,token 使用JSON Web Token设计单点登录系统 1.很久很久以前,Web 基本上就是文档的浏览而已, 既然是浏览,作为服务器, 不需要记录 ...
- day83_11_1 阿里配python使用。
一.环境准备. 1.首先需要在支付包中注册开发者模式,并注册沙箱,模拟支付过程. https://openhome.alipay.com/platform/appDaily.htm?tab=info ...
- 转载:如何严格限制session在30分钟后过期!
如何严格限制session在30分钟后过期!1.设置客户端cookie的lifetime为30分钟:2.设置session的最大存活周期也为30分钟:3.为每个session值加入时间戳,然后在程序调 ...
- WPF 精修篇 自定义控件
原文:WPF 精修篇 自定义控件 自定义控件 因为没有办法对界面可视化编辑 所以用来很少 现在实现的是 自定义控件的 自定义属性 和自定义方法 用VS 创建自定义控件后 会自动创建 Themes 文件 ...
- 源码学习之Spring (系统架构简单解析)
Spring Framework 系统架构总览图 Spring Framework的模块依赖关系图 Spring Framework各个模块功能说明 Spring核心模块 模块名称 主要功能 Spri ...
- Linux 部署vue项目(使用nginx)
1.部署Nginx 请参考Linux下部署nginx,此处不再重复 2.Vue项目打包 # 打包正式环境 npm run build:prod # 打包预发布环境 npm run build:stag ...
- python学习(day1-2)
python 学习(day - 1-2 ) 变量:将运算的中间结果暂存到内存,以便后续程序调⽤. 变量的命名规则: 1, 变量由字⺟, 数字,下划线搭配组合⽽成 2, 不可以⽤数字开头,更不能是全数字 ...
- C# windows服务,解决应用程序开机自启问题
最近在东营做一个超市购物的项目,业务体量很小,是仅供内部员工使用的内网应用程序,其中涉及一个商品数据同步的winform应用程序,有一个问题就是服务器重启后,必须登录服务器操作系统,手动启动才行,于是 ...
- Java生鲜电商平台-秒杀系统微服务架构设计与源码解析实战
Java生鲜电商平台-秒杀系统微服务架构设计与源码解析实战 Java生鲜电商平台- 什么是秒杀 通俗一点讲就是网络商家为促销等目的组织的网上限时抢购活动 比如说京东秒杀,就是一种定时定量秒杀,在规定 ...