from keras.preprocessing.image import load_img, img_to_array

a = load_img('1.jpg')
b = img_to_array(a) print (type(a),type(b))
输出:
  a type:<class 'PIL.JpegImagePlugin.JpegImageFile'>,b type:<class 'numpy.ndarray'>

optimizer:

Adam  :  

算法思想 [1]:

      Adam中动量直接并入了梯度一阶矩(指数加权)的估计。其次,相比于缺少修正因子导致二阶矩估计可能在训练初期具有很高偏置的RMSProp,Adam包括偏置修正,修正从原点初始化的一阶矩(动量项)和(非中心的)二阶矩估计。

数学表达式:

mt和vt分别为一阶动量项和二阶动量项;m^t,v^t为各自的修正值。

beta_1, beta_2为动力值大小通常分别取0.9和0.999。

Wt表示t时刻即第t次迭代模型的参数,gt=ΔJ(Wt)表示t次迭代代价函数关于W的梯度大小

ϵ是一个取值很小的数(一般为1e-8)为了避免分母为0,tensorflow作为backend时,ϵ=1e-7

评价:Adam通常被认为对超参数的选择相当鲁棒,尽管学习率有时需要从建议的默认修改。

keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

lr: float >= 0. Learning rate.
beta_1: float, 0 < beta < 1. Generally close to 1.default 0.9,通常保持不变
beta_2: float, 0 < beta < 1. Generally close to 1.default 0.999,通常保持不变
epsilon: float >= 0. Fuzz factor. If None, defaults to K.epsilon(). decay: float >= 0. Learning rate decay over each update. amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm
from the paper "On the Convergence of Adam and Beyond".

SGD    :

AdaGrad:

Reference:

   https://keras.io/optimizers/

   https://blog.csdn.net/weixin_40170902/article/details/80092628

model.fit()

fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, 
  callbacks=None, validation_split=0.0, validation_data=None,
  shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0,
  steps_per_epoch=None, validation_steps=None, validation_freq=1)

model.fit_generator()

使用数据data_generator 传输数据,用于大型数据集,直接读取大型数据集会导致内存占用过高。

fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, 
        callbacks=None, validation_data=None, validation_steps=None,
        validation_freq=1, class_weight=None, max_queue_size=10, workers=1,
        use_multiprocessing=False, shuffle=True, initial_epoch=0)

callbacks

list()值,当call中条件不满足时停止更新权重,

keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None, restore_best_weights=False)

monitor:需要监视的值,[acc,loss],如果fit种有validation_data,还可使用val_acc, val_loss等

min_delta: 改变的值如果小于min_delta, 将不视为有提高。

patience: 从最好的开始,经过patience个epoch仍未提高,则停止training

_obtain_input_shape()

keras 2.2.2中,keras.applications.imagenet_utils模块不再有_obtain_input_shape, _obtain_input_shape的根模块改为了keras_applications.imagenet_utils

形式改为了

_obtain_input_shape(input_shape,
          default_size = 224,
          min_size = 32,
          data_format = K.image_data_format(),
require_flatten = True,
weights=None):

_obtain_input_shape(input_shape,
          default_size=224,
          min_size=32,
          data_format=K.image_data_format(),
include_top=include_top or weights)

keras 学习笔记(一) ——— model.fit & model.fit_generator的更多相关文章

  1. 官网实例详解-目录和实例简介-keras学习笔记四

    官网实例详解-目录和实例简介-keras学习笔记四 2018-06-11 10:36:18 wyx100 阅读数 4193更多 分类专栏: 人工智能 python 深度学习 keras   版权声明: ...

  2. Keras学习笔记——Hello Keras

    最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...

  3. Keras学习笔记1--基本入门

    """ 1.30s上手keras """ #keras的核心数据结构是“模型”,模型是一种组织网络层的方式,keras 的主要模型是Sequ ...

  4. keras 学习笔记:从头开始构建网络处理 mnist

    全文参考 < 基于 python 的深度学习实战> import numpy as np from keras.datasets import mnist from keras.model ...

  5. keras学习笔记-bili莫烦

    一.keras的backend设置 有两种方式: 1.修改JSON配置文件 修改~/.keras/keras.json文件内容为: { "iamge_dim_ordering":& ...

  6. Python学习笔记:Flask-Migrate基于model做upgrade的基本原理

      1)flask-migrate的官网:https://flask-migrate.readthedocs.io/en/latest/  2)获取帮助,在pycharm的控制台中输入 flask d ...

  7. backbone学习笔记:模型(Model)(2)属性验证

    Backbone的属性验证有2种方法: 1.Backbone自带简单的验证方法,但是验证规则需要自己实现 通过validate()方法进行验证,验证规则写在此方法里. var RoomModel = ...

  8. backbone学习笔记:模型(Model)(1)基础知识

    backbone为复杂Javascript应用程序提供MVC(Model View Controller)框架,框架里最基本的是Model(模型),它用来处理数据,对数据进行验证,完成后台数据与前台数 ...

  9. Python-Django学习笔记(三)-Model模型的编写以及Oracle数据库的配置

    Django使用的 MTV 设计模式(Models.Templates.Views) 因此本节将围绕这三部分并按照这个顺序来创建第一个页面 模型层models.py 模型是数据唯一而且准确的信息来源. ...

随机推荐

  1. Java入门之人需要注意的5大步骤

    作为最抢手的程序开发言语之一,Java在互联网领域中的方位无需赘言.抢手也带来了高薪和许多的作业时机,对那些预备通过学习Java来改动自己命运的同学来说,需求做好以下作业. 1.考虑一下 学习Java ...

  2. 我用python训练了一个拳皇模型,从此在各地游戏厅再也没输过!

    ​ 从世界瞩目的围棋游戏 AlphaGo ​ ​ ​ 突然袭来的回忆杀~ 今天为大家介绍一个在街机游戏<街头霸王 3>中进行模拟来训练改进强化学习算法的工具包.不仅在 MAME 游戏模拟器 ...

  3. Map拼接URL地址

    import java.util.HashMap; import java.util.Iterator; import java.util.Map; /** * @Author: hoje * Des ...

  4. 让iphone5s 支持 flex 布局

    /* Center slide text vertically */display: -webkit-box;display: -ms-flexbox;display: -webkit-flex;di ...

  5. [IDA]批量载入结构体

    我们之前介绍了如果单独定义一个C结构体并转换为IDA中的结构体. 但是,在内核中有很多庞大的结构体,一环接着一环,手动导入不现实. 还存在一个问题,可能大小格式不匹配. 之前有一位老哥推荐我一个工具: ...

  6. 死磕 java同步系列之ReentrantLock VS synchronized——结果可能跟你想的不一样

    问题 (1)ReentrantLock有哪些优点? (2)ReentrantLock有哪些缺点? (3)ReentrantLock是否可以完全替代synchronized? 简介 synchroniz ...

  7. ASP.NET Core快速入门--学习笔记系列文章索引目录

    课程链接:http://video.jessetalk.cn/course/explore 良心课程,大家一起来学习哈! 抓住国庆假期的尾巴完成了此系列课程的学习笔记输出! ASP.NET Core快 ...

  8. 关于ScriptManager.RegisterStartupScript 摘录

    //ScriptManager.RegisterStartupScript 方法 (Control, Type, String, String, Boolean) public static void ...

  9. centos 7 搭建vsftp

    一.FTP简介 1.ftp 概述                                                FTP:(file  transfer  protocol文件传输协议) ...

  10. 树莓派4B到货开箱体验

    树莓派4B到货开箱体验 实不相瞒,喜欢这块板已经很久了,但是国内4GB内存的版本始终没货,.....等等等,终于到货了,迅雷不及眼耳之势赶紧下单...购买点亮开发板所需要的物件 顺便看到一个好看的外壳 ...