我们将A省简化为由N个城市组成,某些城市之间存在双向道路,而且A省的交通有一个特点就是任意两个城市之间都能通过道路相互到达,且在不重复经过城市的情况下任意两个城市之间的到达方案都是唯一的。聪明的你一定已经发现,这些城市构成了树这样一个结构。 

现在百度陆续开了许许多多的子公司。每家子公司又会在各城市中不断兴建属于该子公司的办公室。 

由于各个子公司之间经常有资源的流动,所以公司员工常常想知道,两家子公司间的最小距离。
我们可以把子公司看成一个由办公室组成的集合。那么两个子公司A和B的最小距离定义为min(dist(x,y))(x∈A,y∈B)。其中dist(x,y)表示两个办公室之间的最短路径长度。 

现在共有Q个询问,每次询问分别在两个子公司间的最小距离。 

Input第一行一个正整数T,表示数据组数。 

对于每组数据: 

第一行两个正整数N和M。城市编号为1至N,子公司编号为1至M。 

接下来N-1行给定所有道路的两端城市编号和道路长度。 

接下来M行,依次按编号顺序给出各子公司办公室所在位置,每行第一个整数G,表示办公室数,接下来G个数为办公室所在位置。 

接下来一个整数Q,表示询问数。 

接下来Q行,每行两个正整数a,b(a不等于b),表示询问的两个子公司。 

【数据范围】 

0<=边权<=100 

1<=N,M,Q,工厂总数<=100000Output对于每个询问,输出一行,表示答案。Sample Input

1
3 3
1 2 1
2 3 1
2 1 1
2 2 3
2 1 3
3
1 2
2 3
1 3

Sample Output

1
0
0

题解:这是一道求最近公共祖先的题;我们可以随意选取一个为树根;然后可以利用邻接表将父亲和孩子联系在一起;

然后用DFS搜索记录每一节的权值和其深度;然后输入两个数,先将其深度提到相同,判断是否相等,如果不等,则继续提取

直到相同(这里用a=father[a]);

AC代码为:

#include<iostream>  
#include<cstdio>  
#include<cstring>  
#include<vector>  
#include<algorithm>
using namespace std;
const int INF = 0x3fff3fff;
const int MAXN = 100010;
struct node {
int to, wt, next;
} tree[MAXN * 2];

int head[MAXN], cnt;
int n, m, q;
vector<int> office[MAXN];

void add(int from, int to, int wt) {
tree[cnt].to = to;
tree[cnt].wt = wt;
tree[cnt].next = head[from];
head[from] = cnt++;
}

void init() {
memset(head, -1, sizeof(head));
cnt = 0;
for (int i = 0; i < MAXN; ++i)office[i].clear();
}

int deep[MAXN], f[MAXN], len2f[MAXN];

void dfsDep(int root, int par, int d) {
deep[root] = d;
f[root] = par;
for (int i = head[root], to = -1; i != -1; i = tree[i].next) {
to = tree[i].to;
if (to != par) {
len2f[to] = tree[i].wt;
dfsDep(to, root, d + 1);
}
}
}

int getDis(int a, int b) {
int res = 0;
while (deep[a] < deep[b]) {
res += len2f[b];
b = f[b];
}
while (deep[a] > deep[b]) {
res += len2f[a];
a = f[a];
}
while (a != b) {
res += len2f[a] + len2f[b];
a = f[a];
b = f[b];
}
return res;
}

int main() {

int t, a, b, c;
scanf("%d", &t);
while (t--) {
init();
scanf("%d%d", &n, &m);
for (int i = 1; i < n; ++i) {
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
add(b, a, c);
}
for (int i = 1; i <= m; ++i) {
scanf("%d", &a);
for (int k = 0; k < a; ++k) {
scanf("%d", &b);
office[i].push_back(b);
}
}

dfsDep(1, -1, 0);

scanf("%d", &q);
for (int i = 1; i <= q; ++i) {
scanf("%d%d", &a, &b);
c = INF;
for (int j = 0, asz = office[a].size(); j < asz; ++j) {
for (int k = 0, bsz = office[b].size(); k < bsz; ++k) {
c = min(c, getDis(office[a][j], office[b][k]));
if (c == 0) { j = asz; break; }
}
}
printf("%d\n", c);
}
}
return 0;
}

HDU-6115的更多相关文章

  1. HDU 6115 Factory LCA,暴力

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6115 题意:中文题面 分析:直接维护LCA,然后暴力枚举集合维护答案即可. #include < ...

  2. hdu 6115(LCA 暴力)

    Factory Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)Total ...

  3. LCA(Lowest Common Ancesor)

    LCA(Lowest Common Ancesor) 1.基于二分搜索算法 预处理father[v][k]表示v的2的k次方层祖先,时间复杂度是O(nlogn),每次查询的时间复杂度是O(logn), ...

  4. LCA(最近公共祖先)专题(不定期更新)

    Tarjan(离线)算法 思路: 1.任选一个点为根节点,从根节点开始. 2.遍历该点u所有子节点v,并标记这些子节点v已被访问过. 3.若是v还有子节点,返回2,否则下一步. 4.合并v到u上. 5 ...

  5. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  6. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  7. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

  8. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  9. HDU 4006The kth great number(K大数 +小顶堆)

    The kth great number Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64 ...

  10. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

随机推荐

  1. 点击a标签的时候出现虚影

    在a标签中添加 outline:none;就可以去除了

  2. pat 1027 Colors in Mars(20 分)

    1027 Colors in Mars(20 分) People in Mars represent the colors in their computers in a similar way as ...

  3. nyoj 29-求转置矩阵问题 (行,列位置调换)

    29-求转置矩阵问题 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:8 submit:18 题目描述: 求一个三行三列的转置矩阵. 输入描述: 第一 ...

  4. 【Leetcode 做题学算法周刊】第四期

    首发于微信公众号<前端成长记>,写于 2019.11.21 背景 本文记录刷题过程中的整个思考过程,以供参考.主要内容涵盖: 题目分析设想 编写代码验证 查阅他人解法 思考总结 目录 67 ...

  5. 力扣(LeetCode)三个数的最大乘积 个人题解

    给定一个整型数组,在数组中找出由三个数组成的最大乘积,并输出这个乘积. 示例 1: 输入: [1,2,3] 输出: 6 示例 2: 输入: [1,2,3,4] 输出: 24 注意: 给定的整型数组长度 ...

  6. ZeroC ICE源代码中的那些事 - 嵌套类和局部类

    使用嵌套类(类中定义的类,c++没有静态类)或局部类(在函数或成员方法中定义的类),进行行为模式的委托(委托请求)或异步 . java中嵌套类和局部类隐式完成了你对外部对象(实例)访问的私有堆栈的初始 ...

  7. Unix, Linux以及NT内核和它们各自衍生的系统关系图

  8. Nginx 本地建立负载均衡(Windows环境)

    需求: 现在有个需求:两台服务器,建立负载均衡. A服务器:IP:localhost:负载均衡主服务器:代理本地文件夹D:\\SampleData B服务器:IP:10.10.10.10:代理本地文件 ...

  9. PL真有意思(五):数据类型

    前言 现在大多数程序设计语言中都有表达式和/或对象的类型概念.类型起着两种主要作用: 为许多操作提供了隐含的上下文信息,使程序员可以在许多情况下不必显示的描述这种上下文.比如int类型的两个对象相加就 ...

  10. PyQt5的安装及测试(pycharm)

    参考链接:https://www.cnblogs.com/pywjh/articles/9835931.html     https://blog.csdn.net/SeekAndFindYou/ar ...