HDU3870-Caught these thieves(最小割->偶图->最短路问题)
A group of thieves is approaching a museum in the country of zjsxzy,now they are in city A,and the museum is in city B,where keeps many broken legs of zjsxzy.Luckily,GW learned the conspiracy when he is watching stars and told it to zjsxzy.
Zjsxzy decided to caught these thieves,and he let the police to do this,the police try to catch them on their way from A to B. Although the thieves might travel this way by more than one group, zjsxzy's excellent police has already gather the statistics that the cost needed on each road to guard it.
Now ,zjsxzy's conutry can be described as a N*N matrix A,Aij indicates the city(i,j) have bidirectionals road to city(i+1,j) and city(i,j+1),gurad anyone of them costs Aij.
Now give you the map,help zjsxzy to calculate the minimium cost.We assume thieves may travel in any way,and we will catch all passing thieves on a road if we guard it.
Input
The first line is an integer T,followed by T test cases.
In each test case,the first line contains a number N(1<N<=400).
The following N lines,each line is N numbers,the jth number of the ith line is Aij.
The city A is always located on (1,1) and the city B is always located on (n,n).
Of course,the city (i,j) at the last row or last line won't have road to (i,j+1) or (i+1,j).
Output
For each case,print a line with a number indicating the minimium cost to arrest all thieves.
Sample Input
1
3
10 5 5
6 6 20
4 7 9
Sample Output
18
Hint
The map is like this:
题解:我们根据欧拉函数可以将其转化为偶图,然后加起点和终点,转化为求最短路问题;
AC代码为:
//最小割转化为最短路问题(偶图为稀疏图,故用FIFO队列的SPFA在O(nlogn)时间内稳定)
#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=170000;
struct point
{
int v,w;
}Point;
vector<point> e[maxn];
int n,S,T,q[maxn];
int dis[maxn];
bool inq[maxn];
int SPFA()
{
int i,k,head=0,tail=0;
memset(inq,false,sizeof inq);
for(i=0;i<=(n-1)*(n-1)+1;i++) dis[i]=INF;
q[tail++]=S;
dis[S]=0;
inq[S]=true;
while(head!=tail)
{
k=q[head];
head=(head+1)%maxn;
inq[k]=false;
for(i=0;i<e[k].size();i++)
{
Point=e[k][i];
if(dis[Point.v]>dis[k]+Point.w)
{
dis[Point.v]=dis[k]+Point.w;
if(!inq[Point.v])
{
inq[Point.v]=true;
q[tail]=Point.v;
tail=(tail+1)%maxn;
}
}
}
}
return dis[T];
}
int main()
{
int t,i,j,k;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=0;i<(n-1)*(n-1)+2;i++) e[i].clear();
S=(n-1)*(n-1);
T=(n-1)*(n-1)+1;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&k);
Point.w=k;
if(i==0&&j!=n-1)
{
Point.v=j;
e[S].push_back(Point);
}
if(j==n-1&&i!=n-1)
{
Point.v=i*(n-1)+j-1;
e[S].push_back(Point);
}
if(j==0&&i!=n-1)
{
Point.v=T;
e[i*(n-1)].push_back(Point);
}
if(i==n-1&&j!=n-1)
{
Point.v=T;
e[(n-2)*(n-1)+j].push_back(Point);
}
if(i!=n-1&&j!=n-1)
{
if(i)
{
Point.v=(i-1)*(n-1)+j;
e[i*(n-1)+j].push_back(Point);
Point.v=i*(n-1)+j;
e[(i-1)*(n-1)+j].push_back(Point);
}
if(j)
{
Point.v=i*(n-1)+j-1;
e[i*(n-1)+j].push_back(Point);
Point.v=i*(n-1)+j;
e[i*(n-1)+j-1].push_back(Point);
}
}
}
}
printf("%d\n",SPFA());
}
return 0;
}
HDU3870-Caught these thieves(最小割->偶图->最短路问题)的更多相关文章
- bzoj 1001 狼抓兔子 —— 平面图最小割(最短路)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 平面图最小割可以转化成最短路问题: 建图时看清楚题目的 input ... 代码如下: ...
- URAL1277 Cops and Thieves(最小割)
Cops and Thieves Description: The Galaxy Police (Galaxpol) found out that a notorious gang of thieve ...
- HDU3870 Catch the Theves(平面图最小割转最短路)
题目大概说给一个n×n的方格,边有权值,问从求(1,1)到(n,n)的最小割. 点达到了160000个,直接最大流不好.这题的图是平面图,求最小割可以转化成求其对偶图的最短路,来更高效地求解: 首先源 ...
- HDU3491 Thieves(最小割)
题目大概说,一个国家有n个城市,由m条双向路相连,小偷们从城市s出发准备到h城市,警察准备在某些除了s和h外的城市布置警力抓小偷,各个城市各有警力所需的数目.问警察最少要布置多少警力才能万无一失地抓住 ...
- hdu3870 基于最短路的最小割
题意: 给你一个平面图,让你输出(1,1),(n ,n)的最小割.. 思路: 看完题想都没想直接最大流,结果TLE,想想也是 G<400*400,400*400*4> ...
- hdu3870-Catch the Theves(平面图最小割)
Problem Description A group of thieves is approaching a museum in the country of zjsxzy,now they are ...
- hdu 3870(平面图最小割转最短路)
Catch the Theves Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 65768/32768 K (Java/Others) ...
- hdu4289 最小割最大流 (拆点最大流)
最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...
- 最小割 总结&&做题记录
模型要点: 1.一般适用于二取一问题或者01规划. 2.利用最小割=最大流,转化为最大流求之. 建议阅读胡伯涛的论文 <<最小割模型在信息学竞赛的应用>>,有精彩有序的证明和各 ...
随机推荐
- redhat 配置eth0网卡
redhat 找不到eth0等网卡设备 Serenity关注 ...
- PHP 在Swoole中使用双IoC容器实现无污染的依赖注入
简介: 容器(container)技术(可以理解为全局的工厂方法), 已经是现代项目的标配. 基于容器, 可以进一步实现控制反转, 依赖注入. Laravel 的巨大成功就是构建在它非常强大的IoC容 ...
- B2B市场新的营销思路
随着互联网+时代的到来,企业与企业之间的联系已经慢慢从传统的服务模式转变为网上服务,企业与企业之间通过网络,进行数据信息的交换.传递,开展交易活动的商业模式我们称之为B2B B2B使企业大大节约了企业 ...
- nyoj 58-最少步数 (BFS)
58-最少步数 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:17 submit:22 题目描述: 这有一个迷宫,有0~8行和0~8列: 1,1,1 ...
- hdu 3342 Legal or Not (topsort)
Legal or NotTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- Tsx写一个通用的button组件
一年又要到年底了,vue3.0都已经出来了,我们也不能一直还停留在过去的js中,是时候学习并且在项目中使用一下Ts了. 如果说jsx是基于js的话,那么tsx就是基于typescript的 废话也不多 ...
- kafka connector 使用总结以及自定义connector开发
Kafaka connect 是一种用于在Kafka和其他系统之间可扩展的.可靠的流式传输数据的工具.它使得能够快速定义将大量数据集合移入和移出Kafka的连接器变得简单.Kafka Connect可 ...
- vim-plug 安装 jedi-vim
安装: Plug 'davidhalter/jedi-vim' :PlugInstall 我就在配置文件里写了一个配置项 let g:jedi#use_tabs_not_buffers = 1 进入定 ...
- Kibana创建索引成功,但一直不显示出来(Fielddata is disabled on text fields by default. Set fielddata=true........)
现象 把EFK整个集群搭建完成后,通过Kibana操作界面创建索引(如图1),我创建了lile-zabbix*的索引,显示是创建成功了,但是只要我在重新刷新一次,已经创建的索引就“消失了”.后通过查看 ...
- Running serveral https server on a single IP address
Nginx 在一个IP上配置多个https server时,默认只会发送默认server name的证书.这是由ssl 协议本身行为导致的:先建立ssl connection,后发送http请求.即n ...