CF240E Road Repairs(最小树形图-记录路径)
A country named Berland has n cities. They are numbered with integers from 1 to n. City with index 1 is the capital of the country. Some pairs of cities have monodirectional roads built between them. However, not all of them are in good condition. For each road we know whether it needs repairing or not. If a road needs repairing, then it is forbidden to use it. However, the Berland government can repair the road so that it can be used.
Right now Berland is being threatened by the war with the neighbouring state. So the capital officials decided to send a military squad to each city. The squads can move only along the existing roads, as there's no time or money to build new roads. However, some roads will probably have to be repaired in order to get to some cities.
Of course the country needs much resources to defeat the enemy, so you want to be careful with what you're going to throw the forces on. That's why the Berland government wants to repair the minimum number of roads that is enough for the military troops to get to any city from the capital, driving along good or repaired roads. Your task is to help the Berland government and to find out, which roads need to be repaired.
Input
The first line contains two space-separated integers n and m (1 ≤ n, m ≤ 105) — the number of cities and the number of roads in Berland.
Next m lines contain three space-separated integers ai, bi, ci (1 ≤ ai, bi ≤ n, ai ≠ bi, 0 ≤ ci ≤ 1), describing the road from city ai to city bi. If ci equals 0, than the given road is in a good condition. If ci equals 1, then it needs to be repaired.
It is guaranteed that there is not more than one road between the cities in each direction.
Output
If even after all roads are repaired, it is still impossible to get to some city from the capital, print - 1. Otherwise, on the first line print the minimum number of roads that need to be repaired, and on the second line print the numbers of these roads, separated by single spaces.
The roads are numbered starting from 1 in the order, in which they are given in the input.
If there are multiple sets, consisting of the minimum number of roads to repair to make travelling to any city from the capital possible, print any of them.
If it is possible to reach any city, driving along the roads that already are in a good condition, print 0 in the only output line.
Examples
3 2
1 3 0
3 2 1
1
2
4 4
2 3 0
3 4 0
4 1 0
4 2 1
-1
4 3
1 2 0
1 3 0
1 4 0
0
题解:
题目意思是:给你有向路径,0表示可以走,1表示这条路需要修复才能走,问你要让1号点能走到所有点的最小花费是多少。
思路:最小树形图就是最小代价,输出边的话,就是在zhuliu算法中的缩环的过程中记录需要增加的边和要删除的边,最后倒着处理一遍,剩下的边就是最小树形图上的边。
我们字需要输出边的类型为1的边即可。 参考代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int,int>
#define pil pair<int,ll>
#define mkp make_pair
const int INF=0x3f3f3f3f;
const int maxn=1e6+;
struct Edge{
int x,y,w;
int id,real;
} edge[maxn];
int vis[maxn],id[maxn],in[maxn],pre[maxn];
int lastEdge[maxn],used[maxn];
int addEdge[maxn],delEdge[maxn];
int zhuliu(int root,int n,int m)
{
int res=,edgeNum=m;
while(true)
{
for(int i=;i<=n;++i) in[i]=INF;
for(int i=;i<=m;++i)//找到每个点的最小入边及其编号
{
int x=edge[i].x,y=edge[i].y;
if(edge[i].w<in[y] && x!=y)
{
pre[y]=x;
in[y]=edge[i].w;
lastEdge[y]=edge[i].id;
}
}
for(int i=;i<=n;++i)//判断是否可以形成最小树形图
{
if(i==root) continue;
if(in[i]==INF) return -;
}
int cnt=; in[root]=;
memset(id,-,sizeof id);
memset(vis,-,sizeof vis);
for(int i=;i<=n;++i)
{
res+=in[i];
if(i!=root) used[lastEdge[i]]++;
int y=i;
while(vis[y]!=i&&id[y]==-&&y!=root)
{
vis[y]=i;
y=pre[y];
}
if(y!=root && id[y]==-)
{
cnt++;
for(int x=pre[y];x!=y;x=pre[x]) id[x]=cnt;
id[y]=cnt;
}
} if(cnt==) break;
for(int i=;i<=n;++i)//独立点
if(id[i]==-) id[i]=++cnt; for(int i=;i<=m;++i)
{
int x=edge[i].x,y=edge[i].y;
edge[i].x=id[x];edge[i].y=id[y];
if(id[x]!=id[y])
{
edge[i].w-=in[y];
delEdge[++edgeNum]=lastEdge[y];
addEdge[edgeNum]=edge[i].id;
edge[i].id=edgeNum;
}
}
n=cnt;
root=id[root];
} for(int i=edgeNum;i>m;--i)
{
if(used[i])
{
--used[delEdge[i]];
++used[addEdge[i]];
}
}
return res;
} int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i)
{
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].w);
edge[i].id=i;
edge[i].real=edge[i].w;
} int res=zhuliu(,n,m);
if(res==-||res==) printf("%d\n",res);
else
{
printf("%d\n",res);
for(int i=;i<=m;++i)
{
if(used[i]&&edge[i].real)
printf("%d ",i);
}
puts("");
} return ;
}
CF240E Road Repairs(最小树形图-记录路径)的更多相关文章
- Codeforces 240E. Road Repairs 最小树形图+输出路径
最小树形图裸题,只是须要记录路径 E. Road Repairs time limit per test 2 seconds memory limit per test 256 megabytes i ...
- CF240E Road Repairs
最小树形图+输出方案 输出方案的话记录一下哪些边 然后记得最后拆环要倒着拆就行了
- codeforce 240E 最小树形图+路径记录更新
最小树形图的路径是在不断建立新图的过程中更新的,因此需要开一个结构体cancle记录那些被更新的边,保存可能会被取消的边和边在旧图中的id 在朱刘算法最后添加了一个从后往前遍历新建边的循环,这可以理解 ...
- POJ 1015 Jury Compromise (记录路径的背包问题)
(点击此处查看原题) 题意 为了审判某一个人,需要在n个人当中选出m个人组成陪审团,n个人中每个人都有作为起诉方的价值p和作为辩护方的价值d,为了保证公平性,要求m个人作为起诉方的价值之和P和作为辩护 ...
- HDOJ 5294 Tricks Device 最短路(记录路径)+最小割
最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...
- HDU 2121 Ice_cream’s world II 不定根最小树形图
题目链接: 题目 Ice_cream's world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- HDU 2121 Ice_cream’s world II 最小树形图 模板
开始学习最小树形图,模板题. Ice_cream’s world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32 ...
- [JSOI2008]小店购物 & bzoj4349:最小树形图 最小树形图
---题面(洛谷)--- ---题面(bzoj)--- 其实是同一道题,,,样例都一模一样 题解: 一开始看想了好久,,,还想到了最短路和最小生成树,,然而写的时候才意识到最小生成树应该要用无向边 其 ...
- kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...
随机推荐
- 为什么 HTTPS 比 HTTP 安全
HTTP(超文本传输协议)是目前互联网应用最广泛的协议,伴随着人们网络安全意识的加强,HTTPS 被越来越多地采纳.不论是访问一些购物网站,或是登录一些博客.论坛等,我们都被 HTTPS 保护着,甚至 ...
- java笔试面试第一天
好久未曾启用我的博客,最近来上海找工作,想将笔试面试的过程做个记录,毕竟有总结才有提高嘛.今天算是笔试面试正式开始第一天吧,以下就是我的笔试总结(没有原题了,只有知识点): 笔试题1:java sta ...
- Python数据可视化之matplotlib
常用模块导入 import numpy as np import matplotlib import matplotlib.mlab as mlab import matplotlib.pyplot ...
- (二十一)golang--字符串中的函数
golang中ascii对应的字符占一个字节,而汉字占三个字节. (1)统计字符串的长度len (2)字符串遍历,同时处理有中文的问题r:=[]rune(str) (3)字符串转整数:n,err:= ...
- windows7设置定时任务运行ThinkPHP框架程序
1. 设置Windows的任务计划 可以参考win7计划任务的设置方法 2. 新建Windows执行文件bat 新建cron.bat文件,内容如下: D: cd \wamp\www\tp32 D:\w ...
- nyoj 56-阶乘因式分解(一)(数学)
56-阶乘因式分解(一) 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:15 submit:16 题目描述: 给定两个数m,n,其中m是一个素数. ...
- nyoj 28-大数阶乘 (大数模板)
28-大数阶乘 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:19 submit:39 题目描述: 我们都知道如何计算一个数的阶乘,可是,如果这个数 ...
- Centos下的MySQL安装及配置
里使用的是VMware虚拟机和Centos7系统 虚拟机安装这里不多讲,网上教程很多了,这里就介绍下虚拟机的网络配置. 虚拟机网络配置 Centos网络连接模式这里设置为桥接模式,不用勾选复制物理网络 ...
- i7-9700也能安装Windows7
商家说,i7-8700以上不支持Win7,只能安装Win10.我在手机网上也看过同样的说明,是微软与Intel联合行动,意在强迫用户升级到Win10.文章后面有,并不是不能装win7,是没有提供win ...
- Android状态栏兼容4.4.4与5.0,Android5.0状态栏由半透明设置为全透明
//判断android 版本然后设置Systembar颜色 public void initSystemBar() { Window window = getWindow(); //4.4版本及以上 ...