CF240E Road Repairs(最小树形图-记录路径)
A country named Berland has n cities. They are numbered with integers from 1 to n. City with index 1 is the capital of the country. Some pairs of cities have monodirectional roads built between them. However, not all of them are in good condition. For each road we know whether it needs repairing or not. If a road needs repairing, then it is forbidden to use it. However, the Berland government can repair the road so that it can be used.
Right now Berland is being threatened by the war with the neighbouring state. So the capital officials decided to send a military squad to each city. The squads can move only along the existing roads, as there's no time or money to build new roads. However, some roads will probably have to be repaired in order to get to some cities.
Of course the country needs much resources to defeat the enemy, so you want to be careful with what you're going to throw the forces on. That's why the Berland government wants to repair the minimum number of roads that is enough for the military troops to get to any city from the capital, driving along good or repaired roads. Your task is to help the Berland government and to find out, which roads need to be repaired.
Input
The first line contains two space-separated integers n and m (1 ≤ n, m ≤ 105) — the number of cities and the number of roads in Berland.
Next m lines contain three space-separated integers ai, bi, ci (1 ≤ ai, bi ≤ n, ai ≠ bi, 0 ≤ ci ≤ 1), describing the road from city ai to city bi. If ci equals 0, than the given road is in a good condition. If ci equals 1, then it needs to be repaired.
It is guaranteed that there is not more than one road between the cities in each direction.
Output
If even after all roads are repaired, it is still impossible to get to some city from the capital, print - 1. Otherwise, on the first line print the minimum number of roads that need to be repaired, and on the second line print the numbers of these roads, separated by single spaces.
The roads are numbered starting from 1 in the order, in which they are given in the input.
If there are multiple sets, consisting of the minimum number of roads to repair to make travelling to any city from the capital possible, print any of them.
If it is possible to reach any city, driving along the roads that already are in a good condition, print 0 in the only output line.
Examples
3 2
1 3 0
3 2 1
1
2
4 4
2 3 0
3 4 0
4 1 0
4 2 1
-1
4 3
1 2 0
1 3 0
1 4 0
0
题解:
题目意思是:给你有向路径,0表示可以走,1表示这条路需要修复才能走,问你要让1号点能走到所有点的最小花费是多少。
思路:最小树形图就是最小代价,输出边的话,就是在zhuliu算法中的缩环的过程中记录需要增加的边和要删除的边,最后倒着处理一遍,剩下的边就是最小树形图上的边。
我们字需要输出边的类型为1的边即可。 参考代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int,int>
#define pil pair<int,ll>
#define mkp make_pair
const int INF=0x3f3f3f3f;
const int maxn=1e6+;
struct Edge{
int x,y,w;
int id,real;
} edge[maxn];
int vis[maxn],id[maxn],in[maxn],pre[maxn];
int lastEdge[maxn],used[maxn];
int addEdge[maxn],delEdge[maxn];
int zhuliu(int root,int n,int m)
{
int res=,edgeNum=m;
while(true)
{
for(int i=;i<=n;++i) in[i]=INF;
for(int i=;i<=m;++i)//找到每个点的最小入边及其编号
{
int x=edge[i].x,y=edge[i].y;
if(edge[i].w<in[y] && x!=y)
{
pre[y]=x;
in[y]=edge[i].w;
lastEdge[y]=edge[i].id;
}
}
for(int i=;i<=n;++i)//判断是否可以形成最小树形图
{
if(i==root) continue;
if(in[i]==INF) return -;
}
int cnt=; in[root]=;
memset(id,-,sizeof id);
memset(vis,-,sizeof vis);
for(int i=;i<=n;++i)
{
res+=in[i];
if(i!=root) used[lastEdge[i]]++;
int y=i;
while(vis[y]!=i&&id[y]==-&&y!=root)
{
vis[y]=i;
y=pre[y];
}
if(y!=root && id[y]==-)
{
cnt++;
for(int x=pre[y];x!=y;x=pre[x]) id[x]=cnt;
id[y]=cnt;
}
} if(cnt==) break;
for(int i=;i<=n;++i)//独立点
if(id[i]==-) id[i]=++cnt; for(int i=;i<=m;++i)
{
int x=edge[i].x,y=edge[i].y;
edge[i].x=id[x];edge[i].y=id[y];
if(id[x]!=id[y])
{
edge[i].w-=in[y];
delEdge[++edgeNum]=lastEdge[y];
addEdge[edgeNum]=edge[i].id;
edge[i].id=edgeNum;
}
}
n=cnt;
root=id[root];
} for(int i=edgeNum;i>m;--i)
{
if(used[i])
{
--used[delEdge[i]];
++used[addEdge[i]];
}
}
return res;
} int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i)
{
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].w);
edge[i].id=i;
edge[i].real=edge[i].w;
} int res=zhuliu(,n,m);
if(res==-||res==) printf("%d\n",res);
else
{
printf("%d\n",res);
for(int i=;i<=m;++i)
{
if(used[i]&&edge[i].real)
printf("%d ",i);
}
puts("");
} return ;
}
CF240E Road Repairs(最小树形图-记录路径)的更多相关文章
- Codeforces 240E. Road Repairs 最小树形图+输出路径
最小树形图裸题,只是须要记录路径 E. Road Repairs time limit per test 2 seconds memory limit per test 256 megabytes i ...
- CF240E Road Repairs
最小树形图+输出方案 输出方案的话记录一下哪些边 然后记得最后拆环要倒着拆就行了
- codeforce 240E 最小树形图+路径记录更新
最小树形图的路径是在不断建立新图的过程中更新的,因此需要开一个结构体cancle记录那些被更新的边,保存可能会被取消的边和边在旧图中的id 在朱刘算法最后添加了一个从后往前遍历新建边的循环,这可以理解 ...
- POJ 1015 Jury Compromise (记录路径的背包问题)
(点击此处查看原题) 题意 为了审判某一个人,需要在n个人当中选出m个人组成陪审团,n个人中每个人都有作为起诉方的价值p和作为辩护方的价值d,为了保证公平性,要求m个人作为起诉方的价值之和P和作为辩护 ...
- HDOJ 5294 Tricks Device 最短路(记录路径)+最小割
最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...
- HDU 2121 Ice_cream’s world II 不定根最小树形图
题目链接: 题目 Ice_cream's world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- HDU 2121 Ice_cream’s world II 最小树形图 模板
开始学习最小树形图,模板题. Ice_cream’s world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32 ...
- [JSOI2008]小店购物 & bzoj4349:最小树形图 最小树形图
---题面(洛谷)--- ---题面(bzoj)--- 其实是同一道题,,,样例都一模一样 题解: 一开始看想了好久,,,还想到了最短路和最小生成树,,然而写的时候才意识到最小生成树应该要用无向边 其 ...
- kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...
随机推荐
- egret Tiledmap编写障碍物的思路
egret Tiledmap编写障碍物的思路 获取控制对象下一刻移动的坐标,将其转换成瓦片坐标,如果getTileGIDAt(根据瓦片坐标获取瓦片id)的值不为0,说明对象将要移动的位置有障碍物,不做 ...
- Okhttp3源码解析
首先是Okhttp的使用: //缓存文件夹 File cacheFile = new File(getExternalCacheDir().toString(), "cache") ...
- Golang stackError 补充go错误定位能力
用过go的都知道,go的error实现很简单,errors.New实现的error类并不存储堆栈数据,这导致一个问题,就是多次error return后,或panic后recover了,找不到触发异常 ...
- Docker学习-Kubernetes - 集群部署
Docker学习 Docker学习-VMware Workstation 本地多台虚拟机互通,主机网络互通搭建 Docker学习-Docker搭建Consul集群 Docker学习-简单的私有Dock ...
- [多态] java笔记之多态性
1.多态,说的是对象,说的不是类. 2. 3.多态 = polymorphism 4. 调用如下: 5. 6.口诀: 7.对象的向上转型: 8.对象的向下转型: 9.下面这个异常叫做ClassCast ...
- 网页版的支付宝授权登录(vue+java)
api接口文档:https://docs.open.alipay.com/289/105656 后台管理系统原本是用账号密码登录的,不过需求要改成支付宝授权, 前端仅仅需要改登录页,以及添加一个授权返 ...
- bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】
介绍 在参与的项目和产品中,涉及到模型和算法的需求,主要以自然语言处理(NLP)和知识图谱(KG)为主.NLP涉及面太广,而聚焦在具体场景下,想要生产落地的还需要花很多功夫. 作为NLP的主要方向,情 ...
- Rust 入门 (一)
Rust 语言的介绍.特性什么的都不说了,如有需要,请自行了解.这里我们直接进去正题. 一.开发环境 mac或linux系统,在命令行安装 curl https://sh.rustup.rs -sSf ...
- python3 之 字符串编码小结(Unicode、utf-8、gbk、gb2312等)
python3 解释器默认编码为Unicode,由str类型进行表示.二进制数据使用byte类型表示. 字符串通过编码转换成字节串,字节码通过解码成为字符串. encode:str-->byte ...
- C#音频截取与原文匹配2:使用ffmpeg处理音频文件
ffmpeg获取音频时间 ffmpeg转换音频格式(单声道,16000hz,16bit wav) ffmpeg截取音频 不知道是不是错觉,感觉ffmpeg比NAudio要快啊~ 那么这就是第二个版本 ...