CF240E Road Repairs(最小树形图-记录路径)
A country named Berland has n cities. They are numbered with integers from 1 to n. City with index 1 is the capital of the country. Some pairs of cities have monodirectional roads built between them. However, not all of them are in good condition. For each road we know whether it needs repairing or not. If a road needs repairing, then it is forbidden to use it. However, the Berland government can repair the road so that it can be used.
Right now Berland is being threatened by the war with the neighbouring state. So the capital officials decided to send a military squad to each city. The squads can move only along the existing roads, as there's no time or money to build new roads. However, some roads will probably have to be repaired in order to get to some cities.
Of course the country needs much resources to defeat the enemy, so you want to be careful with what you're going to throw the forces on. That's why the Berland government wants to repair the minimum number of roads that is enough for the military troops to get to any city from the capital, driving along good or repaired roads. Your task is to help the Berland government and to find out, which roads need to be repaired.
Input
The first line contains two space-separated integers n and m (1 ≤ n, m ≤ 105) — the number of cities and the number of roads in Berland.
Next m lines contain three space-separated integers ai, bi, ci (1 ≤ ai, bi ≤ n, ai ≠ bi, 0 ≤ ci ≤ 1), describing the road from city ai to city bi. If ci equals 0, than the given road is in a good condition. If ci equals 1, then it needs to be repaired.
It is guaranteed that there is not more than one road between the cities in each direction.
Output
If even after all roads are repaired, it is still impossible to get to some city from the capital, print - 1. Otherwise, on the first line print the minimum number of roads that need to be repaired, and on the second line print the numbers of these roads, separated by single spaces.
The roads are numbered starting from 1 in the order, in which they are given in the input.
If there are multiple sets, consisting of the minimum number of roads to repair to make travelling to any city from the capital possible, print any of them.
If it is possible to reach any city, driving along the roads that already are in a good condition, print 0 in the only output line.
Examples
3 2
1 3 0
3 2 1
1
2
4 4
2 3 0
3 4 0
4 1 0
4 2 1
-1
4 3
1 2 0
1 3 0
1 4 0
0
题解:
题目意思是:给你有向路径,0表示可以走,1表示这条路需要修复才能走,问你要让1号点能走到所有点的最小花费是多少。
思路:最小树形图就是最小代价,输出边的话,就是在zhuliu算法中的缩环的过程中记录需要增加的边和要删除的边,最后倒着处理一遍,剩下的边就是最小树形图上的边。
我们字需要输出边的类型为1的边即可。 参考代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int,int>
#define pil pair<int,ll>
#define mkp make_pair
const int INF=0x3f3f3f3f;
const int maxn=1e6+;
struct Edge{
int x,y,w;
int id,real;
} edge[maxn];
int vis[maxn],id[maxn],in[maxn],pre[maxn];
int lastEdge[maxn],used[maxn];
int addEdge[maxn],delEdge[maxn];
int zhuliu(int root,int n,int m)
{
int res=,edgeNum=m;
while(true)
{
for(int i=;i<=n;++i) in[i]=INF;
for(int i=;i<=m;++i)//找到每个点的最小入边及其编号
{
int x=edge[i].x,y=edge[i].y;
if(edge[i].w<in[y] && x!=y)
{
pre[y]=x;
in[y]=edge[i].w;
lastEdge[y]=edge[i].id;
}
}
for(int i=;i<=n;++i)//判断是否可以形成最小树形图
{
if(i==root) continue;
if(in[i]==INF) return -;
}
int cnt=; in[root]=;
memset(id,-,sizeof id);
memset(vis,-,sizeof vis);
for(int i=;i<=n;++i)
{
res+=in[i];
if(i!=root) used[lastEdge[i]]++;
int y=i;
while(vis[y]!=i&&id[y]==-&&y!=root)
{
vis[y]=i;
y=pre[y];
}
if(y!=root && id[y]==-)
{
cnt++;
for(int x=pre[y];x!=y;x=pre[x]) id[x]=cnt;
id[y]=cnt;
}
} if(cnt==) break;
for(int i=;i<=n;++i)//独立点
if(id[i]==-) id[i]=++cnt; for(int i=;i<=m;++i)
{
int x=edge[i].x,y=edge[i].y;
edge[i].x=id[x];edge[i].y=id[y];
if(id[x]!=id[y])
{
edge[i].w-=in[y];
delEdge[++edgeNum]=lastEdge[y];
addEdge[edgeNum]=edge[i].id;
edge[i].id=edgeNum;
}
}
n=cnt;
root=id[root];
} for(int i=edgeNum;i>m;--i)
{
if(used[i])
{
--used[delEdge[i]];
++used[addEdge[i]];
}
}
return res;
} int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i)
{
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].w);
edge[i].id=i;
edge[i].real=edge[i].w;
} int res=zhuliu(,n,m);
if(res==-||res==) printf("%d\n",res);
else
{
printf("%d\n",res);
for(int i=;i<=m;++i)
{
if(used[i]&&edge[i].real)
printf("%d ",i);
}
puts("");
} return ;
}
CF240E Road Repairs(最小树形图-记录路径)的更多相关文章
- Codeforces 240E. Road Repairs 最小树形图+输出路径
最小树形图裸题,只是须要记录路径 E. Road Repairs time limit per test 2 seconds memory limit per test 256 megabytes i ...
- CF240E Road Repairs
最小树形图+输出方案 输出方案的话记录一下哪些边 然后记得最后拆环要倒着拆就行了
- codeforce 240E 最小树形图+路径记录更新
最小树形图的路径是在不断建立新图的过程中更新的,因此需要开一个结构体cancle记录那些被更新的边,保存可能会被取消的边和边在旧图中的id 在朱刘算法最后添加了一个从后往前遍历新建边的循环,这可以理解 ...
- POJ 1015 Jury Compromise (记录路径的背包问题)
(点击此处查看原题) 题意 为了审判某一个人,需要在n个人当中选出m个人组成陪审团,n个人中每个人都有作为起诉方的价值p和作为辩护方的价值d,为了保证公平性,要求m个人作为起诉方的价值之和P和作为辩护 ...
- HDOJ 5294 Tricks Device 最短路(记录路径)+最小割
最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...
- HDU 2121 Ice_cream’s world II 不定根最小树形图
题目链接: 题目 Ice_cream's world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- HDU 2121 Ice_cream’s world II 最小树形图 模板
开始学习最小树形图,模板题. Ice_cream’s world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32 ...
- [JSOI2008]小店购物 & bzoj4349:最小树形图 最小树形图
---题面(洛谷)--- ---题面(bzoj)--- 其实是同一道题,,,样例都一模一样 题解: 一开始看想了好久,,,还想到了最短路和最小生成树,,然而写的时候才意识到最小生成树应该要用无向边 其 ...
- kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...
随机推荐
- python 基础之 模块
Python 基础之模块 一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 就是一个python文件中定义好了类和方法,实现了一些功能,可以被别的python文 ...
- (转)白话数字签名(2)——软件&设备
然而它太慢了 非对称加密算法有一个重大缺点——加密速度慢,或者说得更拽一些,编码率比较低.例如在上一篇里我给Clark传的那个1GB的小电影,进行非对称加密足足用了66小时.那个借条小一些吧,也用了将 ...
- PHP 中四大经典排序算法
1.冒泡排序 在要排序的一组数中,对当前还未排好的序列,从前往后对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒.即,每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换. ...
- 一文带你深入了解 Redis 的持久化方式及其原理
Redis 提供了两种持久化方式,一种是基于快照形式的 RDB,另一种是基于日志形式的 AOF,每种方式都有自己的优缺点,本文将介绍 Redis 这两种持久化方式,希望阅读本文后你对 Redis 的这 ...
- sqlalchemy 源码分析之create_engine引擎的创建
引擎是sqlalchemy的核心,不管是 sql core 还是orm的使用都需要依赖引擎的创建,为此我们研究下,引擎是如何创建的. from sqlalchemy import create_eng ...
- IDEA连接Redis
1.创建一个Maven项目 2.在src下的pom.xml文件里,添加相关包引用 <?xml version="1.0" encoding="UTF-8" ...
- homebrew安装和解决brew安装速度慢的问题
homebrew安装 ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/inst ...
- nginx常用模块(三)
Nginx常用模块(三) ngx_http_proxy_module模块配置(http或https协议代理) proxy_pass URL; 应用上下文:location, if in locatio ...
- day 30 多线程 socketserver模块补充
内容回顾: socket 模块 服务端:收发数据 - > accept/recv 客户端:收发数据 -> connect/recv 1. 考试题 1. 解释性和编译型 编译型: 先把代码编 ...
- css三大特效之优先级
1.什么是优先级作用:当多个选择器选中同一个标签,并且给同一个标签设置相同的属性时,如何层叠就由优先级来确定