https://ac.nowcoder.com/acm/problem/19985

看到标签“裴属定理”就来做下,很眼熟,好像小学奥数学过。。

题意:给你a,b,x,y,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)

思路:如(a,b)和(-a,-b)选一个就行。8个操作相当于4个...(a,b) , (b,a) , (a,-b) , (-b,a),设每个操作次数是x1,x2, x3,x4 , 则

对横坐标的贡献:(x1+x3)*a + (x2-x4)*b = x

对纵坐标的贡献:(x1-x3)*b + (x2+x4)*a = y

要让两方程有解,记gcd = gcd(a,b),则根据裴属定理需gcd|x , gcd|y,然而(x1-x3) , (x1+x3)...同奇偶,有四种情况:奇奇奇奇,偶偶偶偶,奇偶奇偶,偶奇偶奇(从左到右,从上到下),

使奇数+1后四个未知数(x1+x3)...都变为偶数,提出一个2与系数a,b结合,即gcd *= 2,然后四种情况只要有一种成立即可。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll g; inline bool check(ll a,ll b){
return (!(a%g)) && (!(b%g));
} int main(){
ios::sync_with_stdio();
cin.tie();
cout.tie();
int t;
cin>>t;
while(t--){
ll a,b,x,y;
cin>>a>>b>>x>>y;
g = *__gcd(a,b);
puts( ( check(x,y)||check(x+a,y+b)||
check(x+b,y+a)||check(x+a+b,y+a+b) ) ? "Y" : "N");
}
return ;
}

牛客19985 HAOI2011向量(裴属定理,gcd)的更多相关文章

  1. [HAOI2011] 向量 - 裴蜀定理

    给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...

  2. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  3. BZOJ 2299 向量(裴蜀定理)

    题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...

  4. bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】

    裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...

  5. [P4549] 【模板】裴蜀定理 - GCD

    __gcd真好用 #include <bits/stdc++.h> using namespace std; int main() { int n,x,a=0; cin>>n; ...

  6. 5.15 牛客挑战赛40 E 小V和gcd树 树链剖分 主席树 树状数组 根号分治

    LINK:小V和gcd树 时限是8s 所以当时好多nq的暴力都能跑过. 考虑每次询问暴力 跳父亲 这样是nq的 4e8左右 随便过. 不过每次跳到某个点的时候需要得到边权 如果直接暴力gcd的话 nq ...

  7. 牛客练习赛66 C公因子 题解(区间gcd)

    题目链接 题目大意 给你一个长为n的数组,给所有数组元素加上一个非负整数x,使得这个数组的所有元素的gcd最大 题目思路 这主要是设计到一个多个数gcd的性质 gcd(a,b,c,d.....)=gc ...

  8. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  9. 牛客练习赛52 | C | [烹饪] (DP,裴蜀定理,gcd)

    牛客练习赛52 C 烹饪 链接:https://ac.nowcoder.com/acm/contest/1084/C来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 327 ...

随机推荐

  1. XSS危害——session劫持(转载)

    在跨站脚本攻击XSS中简单介绍了XSS的原理及一个利用XSS盗取存在cookie中用户名和密码的小例子,有些同学看了后会说这有什么大不了的,哪里有人会明文往cookie里存用户名和密码.今天我们就介绍 ...

  2. vscode vue开发环境搭建

    以前仅了解过VUE但没有真正上手过,现在因为工作需要准备再近几个月里系统的学习一下这款超火的前端框架,希望大佬们指教. ---------------------------------------- ...

  3. 【Intellij】导入 jar 包

    选中工具栏上"File"--->"Project Structure"--->选择“Libraries”--->点击“+”--->选择自 ...

  4. str_replace导致的注入问题汇总

    研究了下replace的注入安全问题. 一般sql注入的过滤方式就是引用addslashes函数进行过滤. 他会把注入的单引号转换成\',把双引号转换成\",反斜杠会转换成\\等 写一段ph ...

  5. 关于http 500错误的小结分享

    一般情况下,http 500内部服务器(HTTP-Internal Server Error)错误说明IIS服务器无法解析ASP代码,访问一个静态页面试试是否也出现这个问题. 如果访问静态页面没问题, ...

  6. 关于JSP页面的静态包含和动态包含

    JSP中有两种包含:静态包含:<%@include file="被包含页面"%> 和 动态包含:<jsp:include page="被包含页面&quo ...

  7. (一)c#Winform自定义控件-基类控件

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  8. Java开发包Jedis

    Jedis: http://www.oschina.net/p/jedis (Redis的官方首选Java开发包) <!--Redis --> <dependency> < ...

  9. Oracle 主键、联合主键的查询与创建

    --查询某个表是否有唯一主键 select cu.* from user_cons_columns cu, user_constraints au where cu.constraint_name = ...

  10. 用小程序·云开发两天搭建mini论坛丨实战

    笔者最近涉猎了小程序相关的知识,于是利用周末时间开发了一款类似于同事的小程序,深度体验了小程序云开发模式提供的云函数.数据库.存储三大能力.关于云开发,可参考文档:小程序·云开发. 个人感觉云开发带来 ...