https://ac.nowcoder.com/acm/problem/19985

看到标签“裴属定理”就来做下,很眼熟,好像小学奥数学过。。

题意:给你a,b,x,y,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)

思路:如(a,b)和(-a,-b)选一个就行。8个操作相当于4个...(a,b) , (b,a) , (a,-b) , (-b,a),设每个操作次数是x1,x2, x3,x4 , 则

对横坐标的贡献:(x1+x3)*a + (x2-x4)*b = x

对纵坐标的贡献:(x1-x3)*b + (x2+x4)*a = y

要让两方程有解,记gcd = gcd(a,b),则根据裴属定理需gcd|x , gcd|y,然而(x1-x3) , (x1+x3)...同奇偶,有四种情况:奇奇奇奇,偶偶偶偶,奇偶奇偶,偶奇偶奇(从左到右,从上到下),

使奇数+1后四个未知数(x1+x3)...都变为偶数,提出一个2与系数a,b结合,即gcd *= 2,然后四种情况只要有一种成立即可。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll g; inline bool check(ll a,ll b){
return (!(a%g)) && (!(b%g));
} int main(){
ios::sync_with_stdio();
cin.tie();
cout.tie();
int t;
cin>>t;
while(t--){
ll a,b,x,y;
cin>>a>>b>>x>>y;
g = *__gcd(a,b);
puts( ( check(x,y)||check(x+a,y+b)||
check(x+b,y+a)||check(x+a+b,y+a+b) ) ? "Y" : "N");
}
return ;
}

牛客19985 HAOI2011向量(裴属定理,gcd)的更多相关文章

  1. [HAOI2011] 向量 - 裴蜀定理

    给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...

  2. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  3. BZOJ 2299 向量(裴蜀定理)

    题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...

  4. bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】

    裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...

  5. [P4549] 【模板】裴蜀定理 - GCD

    __gcd真好用 #include <bits/stdc++.h> using namespace std; int main() { int n,x,a=0; cin>>n; ...

  6. 5.15 牛客挑战赛40 E 小V和gcd树 树链剖分 主席树 树状数组 根号分治

    LINK:小V和gcd树 时限是8s 所以当时好多nq的暴力都能跑过. 考虑每次询问暴力 跳父亲 这样是nq的 4e8左右 随便过. 不过每次跳到某个点的时候需要得到边权 如果直接暴力gcd的话 nq ...

  7. 牛客练习赛66 C公因子 题解(区间gcd)

    题目链接 题目大意 给你一个长为n的数组,给所有数组元素加上一个非负整数x,使得这个数组的所有元素的gcd最大 题目思路 这主要是设计到一个多个数gcd的性质 gcd(a,b,c,d.....)=gc ...

  8. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  9. 牛客练习赛52 | C | [烹饪] (DP,裴蜀定理,gcd)

    牛客练习赛52 C 烹饪 链接:https://ac.nowcoder.com/acm/contest/1084/C来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 327 ...

随机推荐

  1. 在Linux - Centos上安装Python3(上)

    必看内容 在Linux上安装Python常用的2种方法 1.Python源码编译安装,有点复杂,适合老司机 2.从EPEL/IUS仓库安装,新手建议使用些方法,比较简单,目前2019-07-31提供最 ...

  2. 【iOS】PLA 3.3.12

    发件人 Apple Program License Agreement PLA We found that your app uses the Advertising Identifier but d ...

  3. [__NSCFString countByEnumeratingWithState:objects:count:]: unrecognized selector sent to instance 0x17deba00

    还真是一波未平一波又起,又出现了这个问题,详情如下: -[__NSCFString countByEnumeratingWithState:objects:count:]: unrecognized ...

  4. 【iOS】Receiver type 'XXX' for instance message is a forward declaration

    今天遇到这个错误.刚开始字体太大,没显示全,后来调小字体之后看到了完整提示信息: 之后就忽然想起没引入相关的类,添加 #import "RDVTabBarItem.h" 就行了.

  5. 隐马尔科夫模型HMM介绍

    马尔科夫链是描述状态转换的随机过程,该过程具备“无记忆”的性质:即当前时刻$t$的状态$s_t$的概率分布只由前一时刻$t-1$的状态$s_{t-1}$决定,与时间序列中$t-1$时刻之前的状态无关. ...

  6. 整理用Java实现数字转化成字符串左边自动补零方法

    Java 中给数字左边补0 (1)方法一 import java.text.NumberFormat; public class NumberFormatTest { public static vo ...

  7. 完全零基础在Linux中安装 JDK

    完全零基础在Linux中安装 JDK 总体思路:先确定没有Java程序了 — 然后创建相应路径文件夹 — 下载JDK — 解压到当前路径 — 自定义文件名称 — 配置环境变量 — 检查是否安装成功 第 ...

  8. Vue+Typescript中在Vue上挂载axios使用时报错

    Vue+Typescript中在Vue上挂载axios使用时报错 在vue项目开发过程中,为了方便在各个组件中调用axios,我们通常会在入口文件将axios挂载到vue原型身上,如下: main.t ...

  9. .NET Core 3.0预览版7中的ASP.NET Core和Blazor更新

    .NET Core 3.0 Preview 7现已推出,它包含一系列ASP.NET Core和Blazor的新更新. 以下是此预览中的新功能列表: 最新的Visual Studio预览包括.NET C ...

  10. asp.net core系列 69 Amazon S3 资源文件上传示例

    一.  上传示例 Install-Package AWSSDK.S3 -Version 3.3.104.10 using Amazon; using Amazon.Runtime; using Ama ...