https://ac.nowcoder.com/acm/problem/19985

看到标签“裴属定理”就来做下,很眼熟,好像小学奥数学过。。

题意:给你a,b,x,y,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)

思路:如(a,b)和(-a,-b)选一个就行。8个操作相当于4个...(a,b) , (b,a) , (a,-b) , (-b,a),设每个操作次数是x1,x2, x3,x4 , 则

对横坐标的贡献:(x1+x3)*a + (x2-x4)*b = x

对纵坐标的贡献:(x1-x3)*b + (x2+x4)*a = y

要让两方程有解,记gcd = gcd(a,b),则根据裴属定理需gcd|x , gcd|y,然而(x1-x3) , (x1+x3)...同奇偶,有四种情况:奇奇奇奇,偶偶偶偶,奇偶奇偶,偶奇偶奇(从左到右,从上到下),

使奇数+1后四个未知数(x1+x3)...都变为偶数,提出一个2与系数a,b结合,即gcd *= 2,然后四种情况只要有一种成立即可。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll g; inline bool check(ll a,ll b){
return (!(a%g)) && (!(b%g));
} int main(){
ios::sync_with_stdio();
cin.tie();
cout.tie();
int t;
cin>>t;
while(t--){
ll a,b,x,y;
cin>>a>>b>>x>>y;
g = *__gcd(a,b);
puts( ( check(x,y)||check(x+a,y+b)||
check(x+b,y+a)||check(x+a+b,y+a+b) ) ? "Y" : "N");
}
return ;
}

牛客19985 HAOI2011向量(裴属定理,gcd)的更多相关文章

  1. [HAOI2011] 向量 - 裴蜀定理

    给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...

  2. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  3. BZOJ 2299 向量(裴蜀定理)

    题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...

  4. bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】

    裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...

  5. [P4549] 【模板】裴蜀定理 - GCD

    __gcd真好用 #include <bits/stdc++.h> using namespace std; int main() { int n,x,a=0; cin>>n; ...

  6. 5.15 牛客挑战赛40 E 小V和gcd树 树链剖分 主席树 树状数组 根号分治

    LINK:小V和gcd树 时限是8s 所以当时好多nq的暴力都能跑过. 考虑每次询问暴力 跳父亲 这样是nq的 4e8左右 随便过. 不过每次跳到某个点的时候需要得到边权 如果直接暴力gcd的话 nq ...

  7. 牛客练习赛66 C公因子 题解(区间gcd)

    题目链接 题目大意 给你一个长为n的数组,给所有数组元素加上一个非负整数x,使得这个数组的所有元素的gcd最大 题目思路 这主要是设计到一个多个数gcd的性质 gcd(a,b,c,d.....)=gc ...

  8. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  9. 牛客练习赛52 | C | [烹饪] (DP,裴蜀定理,gcd)

    牛客练习赛52 C 烹饪 链接:https://ac.nowcoder.com/acm/contest/1084/C来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 327 ...

随机推荐

  1. go 学习笔记之工作空间

    搭建好 Go 的基本环境后,现在可以正式开始 Go 语言的学习之旅,初学时建议在默认的 GOPATH 工作空间规范编写代码,基本目录结构大概是这个样子. . |-- bin | `-- hello.e ...

  2. Java动态,安全追踪工具

    Java动态,安全追踪工具 在我们日常的开发中,总是难以避免的要解决线上的问题.如果线上的问题我们在本地调试的时候无论调试多少次发现明明本地调用了这个方法呀,怎么线上就是没调呢?还有就是出了问题的时候 ...

  3. S2:log4j

    配置步骤 1.引入jar,放到lib中,jar包被项目管理 2.在src目录下copy了一个文件log4j.properties 3.使用Logger   String word="会员登记 ...

  4. 学好C/C++编程,走遍天下都不怕

    C++这门语言从诞生到今天已经经历了将近30个年头.不可否认,它的学习难度都比其它语言较高.而它的学习难度,主要来自于它的复杂性.现在C++的使用范围比以前已经少了很多,java.C#.python等 ...

  5. PythonDay05

    第五章 今日内容 字典 字典 语法:{'key1':1,'key2':2} 注意:dict保存的数据不是按照我们添加进去的顺序保存的. 是按照hash表的顺序保存的. ⽽hash表 不是连续的. 所以 ...

  6. 【Java笔记】【Java核心技术卷1】chapter3 D2注释

    package chapter3; /** * 文档注释 *@author lp *@version 1 **/ public class D2注释 { //单行注释 /* 长注释 */ }

  7. java虚拟机学习笔记(五)---运行时的数据区域

    Java虚拟机所管理的内存包括以下几个运行时的数据区域:方法区,堆,虚拟机栈,本地方法栈,程序计数器.下面对其进行介绍: 程序计数器 它是一块较小的内存空间,可以看做当前线程做执行的字节码的信号指示器 ...

  8. java学习-NIO(四)Selector

    这一节我们将探索选择器(selectors).选择器提供选择执行已经就绪的任务的能力,这使得多元 I/O 成为可能.就像在第一章中描述的那样,就绪选择和多元执行使得单线程能够有效率地同时管理多个 I/ ...

  9. 【Kubernetes 系列一】Kubernetes 概述

    以下内容还可以通过 Google Slide 查看:https://docs.google.com/presentation/d/1eYP4bkVBojI_e6PqdpxIf0hvWO-JwAf-fy ...

  10. 算法之《图》Java实现

    数据结构之图 定义(百度百科) 图的术语表 无向图 深度优先搜索 广度优先遍历 有向图 路径问题 调度问题 强连通性 最小生成树(无向图) 最小生成树的贪心算法 加权无向图的数据结构 Kruskal算 ...