1. 单向边  + 新图建边

int belong[N], dfn[N], low[N], now_time, scc_cnt;
stack<int> s;
void dfs(int u){
dfn[u] = low[u] = ++now_time;
s.push(u);
for(int i = head[u]; ~i; i = nt[i]){
if(!dfn[to[i]]) dfs(to[i]);
if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]);
}
if(dfn[u] == low[u]){
++scc_cnt;
int now;
while(){
now = s.top(); s.pop();
belong[now] = scc_cnt;
if(now == u) break;
}
}
}
void scc(int n){
now_time = scc_cnt = ;
for(int i = ; i <= n; ++i)
if(!belong[i]) dfs(i);
int v;
for(int i = ; i <= n; ++i){
for(int j = head[i]; ~j; j=nt[j]){
v = to[j];
if(belong[v] != belong[i]){
vc[belong[i]].pb(belong[v]);
}
}
}
}

2.双向边 + 新图建边

int belong[N], dfn[N], low[N], now_time, scc_cnt;
vector<int> vc[N];
vector<pll> e[N];
stack<int> s;
void dfs(int u, int id){
dfn[u] = low[u] = ++now_time;
s.push(u);
for(int i = head[u]; ~i; i = nt[i]){
if(i == (id^)) continue;
if(!dfn[to[i]]) dfs(to[i], i);
if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]);
}
if(dfn[u] == low[u]){
++scc_cnt;
int now;
while(){
now = s.top(); s.pop();
belong[now] = scc_cnt;
if(now == u) break;
}
}
}
void scc(int n){
for(int i = ; i <= n; ++i) dfn[i] = low[i] = belong[i] = ;
while(!s.empty()) s.pop();
now_time = scc_cnt = ;
for(int i = ; i <= n; ++i)
if(!belong[i]) dfs(i, -);
for(int i = , u, v; i < tot; i += ){
u = to[i], v = to[i+];
u = belong[u], v = belong[v];
if(u != v) e[u].pb(pll(v,i/+)), e[v].pb(pll(u,i/+));
}
}

3.边双连通分量。

  边双连通就是没有一个桥。

  桥的定义就是断开这个边能使得图分为2部分。

  先找到桥, 然后再dfs不经过桥所能到达的点都是同一个边双联通分量。  

int dfn[N], low[N], dtot;
void Tarjan(int o, int u){
dfn[u]= low[u] = ++dtot;
for(int i = head[u]; ~i; i = nt[i]){
int v = to[i];
if(!dfn[v]){
Tarjan(u, v);
low[u] = min(low[u], low[v]);
if(low[v] > dfn[u])
bridge[i] = bridge[i^] = ;
}
else if(v != o)
low[u] = min(low[u], dfn[v]);
}
}
int c[N], dcc;
void dfs(int u){
c[u] = dcc;
for(int i = head[u]; i; i = nt[i]){
int v = to[i];
if(c[v] || bridge[i]) continue;
dfs(v);
}
}
int ok[N];
vector<pll> vc[N];
void e_dcc(){
for(int i = ; i <= n; ++i)
if(!dfn[i]) Tarjan(, i);
for(int i = ; i <= n; ++i)
if(!c[i]) {
++dcc;
dfs(i);
}
for(int i = ; i <= tot; i += ){
int u = to[i^], v = to[i];
u = c[u], v = c[v];
if(u == v){
ok[u] |= val[i];
}
else {
vc[u].pb({v,val[i]});
vc[v].pb({u,val[i]});
}
}
}

模板汇总——Tarjian的更多相关文章

  1. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  2. 【模板】NOIP模板汇总

    图论 数据结构 数学 其他: 洛谷模板:a,b两个字符串,求b串在a串中出现的位置 #include<iostream> #include<cstdio> #include&l ...

  3. 模板汇总——KMP & EX-KMP

    1. kmp 相当于往前求出一段字符信息,使得 这段字符信息和前缀相等. void getnext(){ , j = ; nx[] = -; while(j < m){ || b[j] == b ...

  4. 模板汇总——AC自动机

    AC自动机 模板题 HDU-2222 Keywords Search #include<bits/stdc++.h> using namespace std; #define LL lon ...

  5. python实现AES/DES/RSA/MD5/SM2/SM4/3DES加密算法模板汇总

    都是作者累积的,且看其珍惜,大家可以尽量可以保存一下,如果转载请写好出处https://www.cnblogs.com/pythonywy 一.md5加密 1.简介 这是一种使用非常广泛的加密方式,不 ...

  6. 【模板】Tarjian求LCA

    概念 公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点 举个例子吧,如下图所示4和5的最近公共祖先是2,5和3的最近公共祖先是1,2和1的最近公共祖先是1. 算法 常用的求LCA的算法有:Ta ...

  7. 【POJ各种模板汇总】(写在逆风省选前)(不断更新中)

    1.POJ1258 水水的prim……不过poj上硬是没过,wikioi上的原题却过了 #include<cstring> #include<algorithm> #inclu ...

  8. 模板汇总——treap

    1. 旋转treap. 思想:一颗权值BST + 一颗 随机数 最小堆. BZOJ - 3224 代码: #include<bits/stdc++.h> using namespace s ...

  9. 模板汇总——splay

    #define lch(x) tr[x].son[0] #define rch(x) tr[x].son[1] ; , root; struct Node{ ], pre, sz; void init ...

随机推荐

  1. IO流的Properties集合,序列化流与反序列化流,打印流及commons-IO

    内容介绍 Properties集合 序列化流与反序列化流 打印流 commons-IO Properties类 Properties类介绍 Properties 类表示了一个持久的属性集.Proper ...

  2. 设置Myeclipse的jvm内存参数

    Myeclipse经常会遇到内存溢出和Gc开销过大的情况,这时候就需要修改Myeclipse的Jvm内存参数 修改如下:(使用Extjs做公司大项目时候,不要让项目Builders的Javascrip ...

  3. Java8中的流操作-基本使用&性能测试

    为获得更好的阅读体验,请访问原文:传送门 一.流(Stream)简介 流是 Java8 中 API 的新成员,它允许你以声明式的方式处理数据集合(通过查询语句来表达,而不是临时编写一个实现).这有点儿 ...

  4. idea 新建不了servlet文件 方法(1)

    在pem.xml中添加较新版本的servletapi包 <dependency> <groupId>javax.servlet</groupId> <arti ...

  5. 大数据学习之旅2——从零开始搭hadoop完全分布式集群

    前言 本文从零开始搭hadoop完全分布式集群,大概花费了一天的时间边搭边写博客,一步一步完成完成集群配置,所以相信大家按照本文一步一步来完全可以搭建成功.需要注意的是本文限于篇幅和时间的限制,也是为 ...

  6. 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  7. JMeter的JTL大文件解析

    1.背景 不知大家在使用JMeter工具进行性能测试时,是否遇到过JTL结果文件过大导致GUI页面长时间解析无响应的问题.这种情况往往出现在稳定性测试场景下,此时的JTL文件大小可能已经达到G级别了. ...

  8. 欢迎加入我的知识星球:C语言解惑课堂

    我在知识星球上开通了一个有关C语言基础答疑解惑的星球,它叫做:“C语言解惑课堂”.看这名字你就知道虽然有点俗,俗才贴近你的真正需求嘛!这是一个专门帮助C语言初学者答疑解惑的课堂.嗯~~~,关于这个星球 ...

  9. ggplot2 |legend参数设置,图形精雕细琢

    本文首发于微信公众号“生信补给站”,https://mp.weixin.qq.com/s/A5nqo6qnlt_5kF3_GIrjIA 学习了ggplot2|详解八大基本绘图要素后,就可以根据自己的需 ...

  10. Coablt strike官方教程中文版

    安装和设置 系统要求 Cobalt Strike的最低系统要求 2 GHz +以上的cpu 2 GB RAM 500MB +可用空间 在Amazon的EC2上,至少使用较高核数的CPU(c1.medi ...