CodeForces 223C Partial Sums 多次前缀和
题解:
一个数列多次前缀和之后, 对于第i个数来说他的答案就是
for(int i = ; i <= n; ++i){
for(int j = ; j <= i; ++j){
b[i] = (b[i] + 1ll * a[j] * C(k-+j-i,j-i)) % mod;
}
}
唯一注意的就是这个k会到1e9。
观察可能,其实我们最多也就用了n个组合数, 并且这个C(n, m) 的 m 足够小。
所以我们可以根据定义先把这几个组合数先预处理出来。
代码:
#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 2e3 + ;
int n, k;
int a[N], b[N];
int inv[N];
int c[N];
void init(){
int MOD = mod;
inv[] = ;
for(int i = ; i < N; i ++){
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
}
c[] = ;
for(int i = ; i <= n; ++i){
c[i] = ;
int now = k + i - ;
for(int j = ; j <= i; ++j){
c[i] = 1ll * c[i] * now % mod * inv[j] % mod;
--now;
}
}
}
int main(){
scanf("%d%d", &n, &k);
for(int i = ; i <= n; ++i) scanf("%d", &a[i]);
init();
if(k){
for(int i = ; i <= n; ++i){
for(int j = ; j <= i; ++j){
b[i] = (b[i] + 1ll * a[j] * c[i-j]) % mod;
}
}
for(int i = ; i <= n; ++i)
a[i] = b[i];
}
for(int i = ; i <= n; ++i){
printf("%d%c", a[i], " \n"[i==n]);
}
return ;
}
CodeForces 223C Partial Sums 多次前缀和的更多相关文章
- Codeforces 223C Partial Sums 数论+组合数学
题意非常easy,求不是那么好求的,k非常大 要操作非常多次,所以不可能直接来的.印象中解决操作比較多无非线段树 循环节 矩阵 组合数等等吧,这道题目 也就仅仅能多画画什么 的了 就以第一个案例为主吧 ...
- CF思维联系–CodeForces - 223 C Partial Sums(组合数学的先线性递推)
ACM思维题训练集合 You've got an array a, consisting of n integers. The array elements are indexed from 1 to ...
- 51nod1161 Partial Sums
开始想的是O(n2logk)的算法但是显然会tle.看了解题报告然后就打表找起规律来.嘛是组合数嘛.时间复杂度是O(nlogn+n2)的 #include<cstdio> #include ...
- Non-negative Partial Sums(单调队列)
Non-negative Partial Sums Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
- 51 Nod 1161 Partial sums
1161 Partial Sums 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 取消关注 给出一个数组A,经过一次 ...
- [codeforces 509]C. Sums of Digits
[codeforces 509]C. Sums of Digits 试题描述 Vasya had a strictly increasing sequence of positive integers ...
- CodeForces 816B Karen and Coffee(前缀和,大量查询)
CodeForces 816B Karen and Coffee(前缀和,大量查询) Description Karen, a coffee aficionado, wants to know the ...
- hdu 4193 Non-negative Partial Sums 单调队列。
Non-negative Partial Sums Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
- TOJ 1721 Partial Sums
Description Given a series of n numbers a1, a2, ..., an, the partial sum of the numbers is defined a ...
随机推荐
- Eclipse Other Projects小问题
Eclipse 不知什么时候多了个 "Other Projects" 文件夹,所有的项目又多了一层目录,如图所示: 虽然对功能没任何影响,但每次打开有些麻烦,多少感觉有些不爽…… ...
- DES、3DES、AES、PBE对称加密算法实现及应用
1.对称加密算法概述 对称加密算法是应用较早的加密算法,技术成熟.在对称加密算法中,数据发信方将明文和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去.收信方收到密文后,若想解读原文 ...
- 夯实Java基础(九)——final关键字
1.前言 Java语言中的final关键字,想必大家都不是很陌生,我们自己用的最多的应该是用来定义常量吧,那么今天我们就来了解final这个关键字的用法,这个关键字还是非常简单的. final从字面意 ...
- L4170[CQOI2007]涂色
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i = a; i <= b; ...
- STM32实现Airplay音乐播放器
AirPlay是苹果公司推出的一套无线音乐解决方案,我们手里的iPhone.iPad甚至是Apple Watch等设备还有电脑上的iTunes都支持AirPlay,但是支持AirPlay功能的音响设备 ...
- 为什么建立数据仓库需要使用ETL工具?
在做项目时是不是时常让客户有这样的困扰: 1.开发时间太长 2.花费太多 3.需要太多资源 4.集成多个事务系统数据总是需要大量人力成本 5.找不到合适的技能和经验的人 6.一旦建立,数据仓库无法足够 ...
- java多线程与并发(基础篇)
一.进程与线程 进程:是代码在数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位. 线程:是进程的一个执行路径,一个进程中至少有一个线程,进程中的多个线程共享进程的 资源. 虽然系统是把资源 ...
- go 学习笔记之数组还是切片都没什么不一样
上篇文章中详细介绍了 Go 的基础语言,指出了 Go 和其他主流的编程语言的差异性,比较侧重于语法细节,相信只要稍加记忆就能轻松从已有的编程语言切换到 Go 语言的编程习惯中,尽管这种切换可能并不是特 ...
- 《大牛到底是如何阅读JDK源码的?》一起来学习一下
前言: 如何阅读源码,是每个程序员需要面临的一项挑战,为什么需要阅读源码?从实用性的角度来看,主要有三个目的: 第一,解决手头的新问题或者新需求; 第二,真正理解一部分理论的落地实现; 第三,应对面试 ...
- 【原】iOS查找私有API
喜接新项目往往预示的会出一堆问题.解决问题的同时往往也就是学到更多东西的时候,这也许就是学习到新东西最直接最快速的方法吧! 小编经过努力,新项目终于过测试了,可是被苹果大大给拒了,好苦啊,最近的审核真 ...