任何曾经试图在 Python 中只利用 NumPy 编写神经网络代码的人都知道那是多么麻烦。编写一个简单的一层前馈网络的代码尚且需要 40 多行代码,当增加层数时,编写代码将会更加困难,执行时间也会更长。

TensorFlow 使这一切变得更加简单快捷,从而缩短了想法到部署之间的实现时间。在本教程中,你将学习如何利用 TensorFlow 的功能来实现深度神经网络。

TensorFlow 是由 Google Brain 团队为深度神经网络(DNN)开发的功能强大的开源软件库,于 2015 年 11 月首次发布,在 Apache 2.x 协议许可下可用。截至今天,短短的两年内,其 GitHub 库大约 845 个贡献者共提交超过 17000 次,这本身就是衡量 TensorFlow 流行度和性能的一个指标。

图 1 列出了当前流行的深度学习框架,从中能够清楚地看到 TensorFlow 的领先地位:

图 1 TensorFlow的领先地位示意图

先来了解一下 TensorFlow 究竟是什么,以及它为什么在 DNN 研究人员和工程师中如此受欢迎。

开源深度学习库 TensorFlow 允许将深度神经网络的计算部署到任意数量的 CPU 或 GPU 的服务器、PC 或移动设备上,且只利用一个 TensorFlow API。你可能会问,还有很多其他的深度学习库,如 Torch、Theano、Caffe 和 MxNet,那 TensorFlow 与其他深度学习库的区别在哪里呢?包括 TensorFlow 在内的大多数深度学习库能够自动求导、开源、支持多种 CPU/GPU、拥有预训练模型,并支持常用的NN架构,如递归神经网络(RNN)、卷积神经网络(CNN)和深度置信网络(DBN)。

TensorFlow 则还有更多的特点,如下:

  • 支持所有流行语言,如 Python、C++、Java、R和Go。
  • 可以在多种平台上工作,甚至是移动平台和分布式平台。
  • 它受到所有云服务(AWS、Google和Azure)的支持。
  • Keras——高级神经网络 API,已经与 TensorFlow 整合。
  • 与 Torch/Theano 比较,TensorFlow 拥有更好的计算图表可视化。
  • 允许模型部署到工业生产中,并且容易使用。
  • 有非常好的社区支持。
  • TensorFlow 不仅仅是一个软件库,它是一套包括 TensorFlow,TensorBoard 和 TensorServing 的软件。

谷歌 research 博客列出了全球一些使用 TensorFlow 开发的有趣项目:

  • Google 翻译运用了 TensorFlow 和 TPU(Tensor Processing Units)。
  • Project Magenta 能够使用强化学习模型生成音乐,运用了 TensorFlow。
  • 澳大利亚海洋生物学家使用了 TensorFlow 来发现和理解濒临灭绝的海牛。
  • 一位日本农民运用 TensorFlow 开发了一个应用程序,使用大小和形状等物理特性对黄瓜进行分类。

使用 TensorFlow 的项目还有很多。本教程旨在让读者理解 TensorFlow 在深度学习模型中的应用,使读者可以轻松地将模型用于数据集并开发有用的应用程序。

以上初步讲解完毕之后,在这里分享 TensorFlow初学视频教程,内容如下

(1)Tensorflow简介与环境搭建

简要介绍了tensorflow是什么,详细介绍了Tensorflow历史版本变迁以及tensorflow的架构和强大特性。并在Tensorflow1.0、pytorch、Tensorflow2.0之间做了对比。最后通过实战讲解了在Google cloud和AWS两个平台上的环境配置。

(2)Tensorflow keras实战

详细讲解如何使用tf.keras进行模型的搭建以及大量的深度学习的理论知识。理论知识包括分类问题、回归问题、损失函数、神经网络、激活函数、dropout、批归一化、深度神经网络、Wide&Deep模型、密集特征、稀疏特征、超参数搜索等及其在图像分类、房价预测上的实现。...

(3) Tensorflow基础API使用

接上一节课中使用高级抽象的API tf.keras搭建模型,本节课则介绍了基础的API来方便大家更加灵活的定义和使用模型。课程内容包括tensorflow基础数据类型、自定义模型和损失函数、自定义求导、tf.function、图结构等以及其在图像分类、房价预测上的实现。...

需要的小伙伴可点击进入扣群下载,群内不定期的会分享资料教程,点击直达链接:https://jq.qq.com/?_wv=1027&k=55fzJrT

全方面讲解TensorFlow的更多相关文章

  1. 【拖拽可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!

    "整篇文章较长,干货很多!建议收藏后,分章节阅读." 一.设计方案 整体设计方案思维导图: 整篇文章,也将按照这个结构来讲解. 若有重点关注部分,可点击章节目录直接跳转! 二.项目 ...

  2. Java 最全异常讲解

    1. 导引问题 实际工作中,遇到的情况不可能是非常完美的.比如:你写的某个模块,用户输入不一定符合你的要求.你的程序要打开某个文件,这个文件可能不存在或者文件格式不对,你要读取数据库的数据,数据可能是 ...

  3. 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

    初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...

  4. TensorFlow入门之MNIST样例代码分析

    这几天想系统的学习一下TensorFlow,为之后的工作打下一些基础.看了下<TensorFlow:实战Google深度学习框架>这本书,目前个人觉得这本书还是对初学者挺友好的,作者站在初 ...

  5. 人工智能热门图书(深度学习、TensorFlow)免费送!

    欢迎访问网易云社区,了解更多网易技术产品运营经验. 这个双十一,人工智能市场火爆,从智能音箱到智能分拣机器人,人工智能已逐渐渗透到我们的生活的方方面面.网易云社区联合博文视点为大家带来人工智能热门图书 ...

  6. Mac tensorflow mnist实例

    Mac tensorflow mnist实例 前期主要需要安装好tensorflow的环境,Mac 如果只涉及到CPU的版本,推荐使用pip3,傻瓜式安装,一行命令!代码使用python3. 在此附上 ...

  7. Tensorflow保存神经网络参数有妙招:Saver和Restore

    摘要:这篇文章将讲解TensorFlow如何保存变量和神经网络参数,通过Saver保存神经网络,再通过Restore调用训练好的神经网络. 本文分享自华为云社区<[Python人工智能] 十一. ...

  8. 学习TensorFlow,保存学习到的网络结构参数并调用

    在深度学习中,不管使用那种学习框架,我们会遇到一个很重要的问题,那就是在训练完之后,如何存储学习到的深度网络的参数?在测试时,如何调用这些网络参数?针对这两个问题,本篇博文主要探索TensorFlow ...

  9. 前端面试题总结(js、html、小程序、React、ES6、Vue、算法、全栈热门视频资源)

    写在前面 参考答案及资源在看云平台发布,如果大家想领取资源以及查看答案,可直接前去购买.一次购买永久可看,文档长期更新!有什么意见与建议欢迎您及时联系作者或留言回复! 文档描述 本文是关注微信小程序的 ...

随机推荐

  1. 阿里云服务器CentOS6.9安装Tomcat

    上篇讲了CentOS6.9安装jdk,这篇来讲Tomcat的安装,本来准备使用yum命令安装的,但是通过 yum search tomcat 发现只有tomcat6,所以就在官网下了一个tomcat8 ...

  2. Spring5源码解析-前奏:本地构建Spring5源码

    构建环境 macOS 10.13.6 JDK1.8 IntelliJ IDEA 2018.3.6 (Ultimate Edition) Spring v5.1.9.RELEASE Gradle 5.5 ...

  3. Spark 学习笔记之 Streaming和Kafka Direct

    Streaming和Kafka Direct: Spark version: 2.2.0 Scala version: 2.11 Kafka version: 0.11.0.0 Note: 最新版本感 ...

  4. 快学Scala 第二课 (apply, if表达式,循环,函数的带名参数,可变长参数,异常)

    apply方法是Scala中十分常见的方法,你可以把这种用法当做是()操作符的重载形式. 像以上这样伴生对象的apply方法是Scala中构建对象的常用手法,不再需要使用new. if 条件表达式的值 ...

  5. AlexNet模型的解析及tensorflow实现

    AlexNet是ImageNet LSVRC 2012比赛中分类效果第一的深度神经网络模型,点击链接下载论文http://papers.nips.cc/paper/4824-imagenet-clas ...

  6. jmeter从获取token开始设计接口

    用自己实习时候的一个项目来实现一下获取token的接口测试 以登录dmp的学科列表为例子: 从登录开始,打开开发者选项 点击登录 在开发者窗口中network xhr Fildder中,看登录时的请求 ...

  7. JAVA之类的动手动脑

    1.默认构造方法与自定义的构造方法的冲突 package com.xu; class fool { int value; fool(int nowvalue) { value=nowvalue; } ...

  8. C# 获取顶级(一级)域名方法

    /// <summary> /// 获取域名的顶级域名 /// </summary> /// <param name="domain">< ...

  9. Numpy数组解惑

    参考: 理解numpy的rollaxis与swapaxes函数:https://blog.csdn.net/liaoyuecai/article/details/80193996 Numpy数组解惑: ...

  10. 终端 10X 工作法(一)

    目录 1. Terminal 2. Grep 3. Sed 4. Awk 5. Xargs 6. Find 在 github 上面有一个 700 多人 star 的 repo 叫做 Bash-Onel ...