Data Compression is an approach to compress the origin dataset and save spaces. According to the Economist reports, the amount of digital dat in the world is growing explosively, which increase from 1.2 zettabytes to 1.8 zettabytes in 2010 and 2011. So how to compress data and manage storage cost-effectively is a challenging and important task.

Traditionally, we use compression algorithms to achieve data reduction. The main idea of data compression is "use the fewest number of bits to represent an information as accurately as possible". What we want to do is to represent the origin data information as accurately as possible, so it allows us to ignore some useless information when converting the encoded data to represented data. We can classify the classical compression approach into lossless compression and lossy compression. The difference between them is the loss of unnecessary information.

For lossless compression, it reduces data by identifying and eliminating statistical redundancy in reversible fashion. For removing redundant information. It can use statistical properties to build a new encoding system, like Huffman coding. Or it can use dictionary model, replacing the repeated strings with slide window algorithm. What a matter is that for a lossless compression, when we restore the data, we can get the origin data without losing any information.

For lossy compression, it reduces data by identifying unnecessary information and irretrievably removing it. For the removing unnecessary information, unnecessary information indeed has its own information, which may not be useful in some particular field. So it means lossy compression. In some filed, we just need useful information, and ignore useless information, so lossy compression methods works in Image, Audio, and Video. So we can't get the origin data when we use lossy compression algorithm.

For a lossless approach, when data become larger, eliminating statistical redundancy is unacceptable. Lossless approach needs data statistic information, counting all information. So for a large dataset, it must tradeoff between speed and compression ratio.

There are two methods to compress data, delta compression and data deduplication.

Delta compression is a new perspective to compress two very similar files. It compares two files, A and B, and calculates the delta A-B, so file B can be expressed as file A + delta A-B, which can save space. Delta compression is generally used in source code version, synchronization.

Data deduplication target large-scale system, which has a big granularity (file level or 8K kb size chunk level) the reason why using chunk-level instead of file level in data deduplication is chunk-level can achieve better compression performance. In general, data deduplication splits the back-up data into chunks, and identifies a chunk by its own cryptographically secure hash (SHA-1) signature. For some same chunks, it will remove the duplicate data chunks and store only one copy of that to achieve the goal (saving the space). It will only store the unique chunk, and file metadata, which can be used to reconstruct the origin file.

Data Compression Category的更多相关文章

  1. SQL SERVER ->> Data Compression

    最近做了一个关于数据压缩的项目,要把整个SQL SERVER服务器下所有的表对象要改成页压缩.于是趁此机会了解了一下SQL SERVER下压缩技术. 这篇文章几乎就是完全指导手册了 https://t ...

  2. Programming Assignment 5: Burrows–Wheeler Data Compression

    编程作业五 作业链接:Burrows-Wheeler Data Compression & Checklist 我的代码:MoveToFront.java & CircularSuff ...

  3. dimensionality reduction动机---data compression(使算法提速)

    data compression可以使数据占用更少的空间,并且能使算法提速 什么是dimensionality reduction(维数约简)    例1:比如说我们有一些数据,它有很多很多的feat ...

  4. Intent中的四个重要属性——Action、Data、Category、Extras

    Intent作为联系各Activity之间的纽带,其作用并不仅仅只限于简单的数据传递.通过其自带的属性,其实可以方便的完成很多较为复杂的操作.例如直接调用拨号功能.直接自动调用合适的程序打开不同类型的 ...

  5. <转>四个重要属性——Action、Data、Category、Extras

    Intent作为联系各Activity之间的纽带,其作用并不仅仅只限于简单的数据传递.通过其自带的属性,其实可以方便的完成很多较为复杂的操作.例如直接调用拨号功能.直接自动调用合适的程序打开不同类型的 ...

  6. Data Compression

    数据压缩 introduction 压缩数据可以节省存储数据需要的空间和传输数据需要的时间,虽然摩尔定律说集成芯片上的晶体管每 18-24 个月翻一倍,帕金森定律说数据会自己拓展来填满可用空间,但数据 ...

  7. Hive 压缩技术Data Compression

    Mapreducwe 执行流程 :input > map > shuffle > reduce > output 压缩执行时间,map 之后,压缩,数据存储在本地磁盘,减少磁盘 ...

  8. 吴恩达机器学习笔记48-降维目标:数据压缩与可视化(Motivation of Dimensionality Reduction : Data Compression & Visualization)

    目标一:数据压缩 除了聚类,还有第二种类型的无监督学习问题称为降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,而且它也让我们 ...

  9. 【转】The most comprehensive Data Science learning plan for 2017

    I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...

随机推荐

  1. springboot与docker整合

    一.springboot与docker整合 a.创建Dockerfile FROM java MAINTAINER "Wing"<1561815137@qq.com> ...

  2. 一个基于protobuf的极简RPC

    前言 RPC采用客户机/服务器模式实现两个进程之间的相互通信,socket是RPC经常采用的通信手段之一.当然,除了socket,RPC还有其他的通信方法:http.管道...网络开源的RPC框架也比 ...

  3. spring5 源码深度解析----- 事务增强器(100%理解事务)

    上一篇文章我们讲解了事务的Advisor是如何注册进Spring容器的,也讲解了Spring是如何将有配置事务的类配置上事务的,实际上也就是用了AOP那一套,也讲解了Advisor,pointcut验 ...

  4. Spring Boot 2.x基础教程:Swagger静态文档的生成

    前言 通过之前的两篇关于Swagger入门以及具体使用细节的介绍之后,我们已经能够轻松地为Spring MVC的Web项目自动构建出API文档了.如果您还不熟悉这块,可以先阅读: Spring Boo ...

  5. JDK1.7中HashMap死环问题及JDK1.8中对HashMap的优化源码详解

    一.JDK1.7中HashMap扩容死锁问题 我们首先来看一下JDK1.7中put方法的源码 我们打开addEntry方法如下,它会判断数组当前容量是否已经超过的阈值,例如假设当前的数组容量是16,加 ...

  6. ConcurrentHashMap实现原理以及源码分析

    ConcurrentHashMap是HashMap的高并发版本,是线程安全的,而HashMap是非线程安全的 一.底层实现 底层结构跟hashmap一样,都是通过数组+链表+红黑树实现的,不过它要保证 ...

  7. cogs2550. 冰桥,升起来了!

    [问题背景] 11月16日: 今天要来到南极洲的一角来考察啦!南极的空气真的很好呢,只不过有点冷,雪什么的真是太可爱了!这次我要在一个冰谷(应该说是山谷的地方)考察,考察点在这山谷的两边(希望不要掉下 ...

  8. git操作指令,以及常规git代码操作

    安装git后操作指令如下:可以查阅git安装使用操作指南详情git安装使用操作图示详情.note 线上可参考指南:http://www.bootcss.com/p/git-guide/   所有操作在 ...

  9. DRF框架中csrf异常

    一.报错信息 "detail": "CSRF Failed: CSRF cookie not set." 二.解决办法 方法一: 在配置文件中配置 REST_F ...

  10. 一次看懂 Https 证书认证

    TLS 传输层安全性协定 TLS(Transport Layer Security),及其前身安全套接层 SSL(Secure Sockets Layer)是一种安全协议,目的是为网际网路通信,提供安 ...