Data Compression Category
Data Compression is an approach to compress the origin dataset and save spaces. According to the Economist reports, the amount of digital dat in the world is growing explosively, which increase from 1.2 zettabytes to 1.8 zettabytes in 2010 and 2011. So how to compress data and manage storage cost-effectively is a challenging and important task.
Traditionally, we use compression algorithms to achieve data reduction. The main idea of data compression is "use the fewest number of bits to represent an information as accurately as possible". What we want to do is to represent the origin data information as accurately as possible, so it allows us to ignore some useless information when converting the encoded data to represented data. We can classify the classical compression approach into lossless compression and lossy compression. The difference between them is the loss of unnecessary information.
For lossless compression, it reduces data by identifying and eliminating statistical redundancy in reversible fashion. For removing redundant information. It can use statistical properties to build a new encoding system, like Huffman coding. Or it can use dictionary model, replacing the repeated strings with slide window algorithm. What a matter is that for a lossless compression, when we restore the data, we can get the origin data without losing any information.
For lossy compression, it reduces data by identifying unnecessary information and irretrievably removing it. For the removing unnecessary information, unnecessary information indeed has its own information, which may not be useful in some particular field. So it means lossy compression. In some filed, we just need useful information, and ignore useless information, so lossy compression methods works in Image, Audio, and Video. So we can't get the origin data when we use lossy compression algorithm.
For a lossless approach, when data become larger, eliminating statistical redundancy is unacceptable. Lossless approach needs data statistic information, counting all information. So for a large dataset, it must tradeoff between speed and compression ratio.
There are two methods to compress data, delta compression and data deduplication.
Delta compression is a new perspective to compress two very similar files. It compares two files, A and B, and calculates the delta A-B, so file B can be expressed as file A + delta A-B, which can save space. Delta compression is generally used in source code version, synchronization.
Data deduplication target large-scale system, which has a big granularity (file level or 8K kb size chunk level) the reason why using chunk-level instead of file level in data deduplication is chunk-level can achieve better compression performance. In general, data deduplication splits the back-up data into chunks, and identifies a chunk by its own cryptographically secure hash (SHA-1) signature. For some same chunks, it will remove the duplicate data chunks and store only one copy of that to achieve the goal (saving the space). It will only store the unique chunk, and file metadata, which can be used to reconstruct the origin file.
Data Compression Category的更多相关文章
- SQL SERVER ->> Data Compression
最近做了一个关于数据压缩的项目,要把整个SQL SERVER服务器下所有的表对象要改成页压缩.于是趁此机会了解了一下SQL SERVER下压缩技术. 这篇文章几乎就是完全指导手册了 https://t ...
- Programming Assignment 5: Burrows–Wheeler Data Compression
编程作业五 作业链接:Burrows-Wheeler Data Compression & Checklist 我的代码:MoveToFront.java & CircularSuff ...
- dimensionality reduction动机---data compression(使算法提速)
data compression可以使数据占用更少的空间,并且能使算法提速 什么是dimensionality reduction(维数约简) 例1:比如说我们有一些数据,它有很多很多的feat ...
- Intent中的四个重要属性——Action、Data、Category、Extras
Intent作为联系各Activity之间的纽带,其作用并不仅仅只限于简单的数据传递.通过其自带的属性,其实可以方便的完成很多较为复杂的操作.例如直接调用拨号功能.直接自动调用合适的程序打开不同类型的 ...
- <转>四个重要属性——Action、Data、Category、Extras
Intent作为联系各Activity之间的纽带,其作用并不仅仅只限于简单的数据传递.通过其自带的属性,其实可以方便的完成很多较为复杂的操作.例如直接调用拨号功能.直接自动调用合适的程序打开不同类型的 ...
- Data Compression
数据压缩 introduction 压缩数据可以节省存储数据需要的空间和传输数据需要的时间,虽然摩尔定律说集成芯片上的晶体管每 18-24 个月翻一倍,帕金森定律说数据会自己拓展来填满可用空间,但数据 ...
- Hive 压缩技术Data Compression
Mapreducwe 执行流程 :input > map > shuffle > reduce > output 压缩执行时间,map 之后,压缩,数据存储在本地磁盘,减少磁盘 ...
- 吴恩达机器学习笔记48-降维目标:数据压缩与可视化(Motivation of Dimensionality Reduction : Data Compression & Visualization)
目标一:数据压缩 除了聚类,还有第二种类型的无监督学习问题称为降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,而且它也让我们 ...
- 【转】The most comprehensive Data Science learning plan for 2017
I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...
随机推荐
- 从零开始的vue学习笔记(四)
组件注册 组件名 Vue.component('my-component-name', { /* ... */ }) 这里的my-component-name就是组件名,组件名的取法可以参考指南 ke ...
- 超大规模商用 K8s 场景下,阿里巴巴如何动态解决容器资源的按需分配问题?
作者 | 张晓宇(衷源) 阿里云容器平台技术专家 关注『阿里巴巴云原生』公众号,回复关键词"1010",可获取本文 PPT. 导读:资源利用率一直是很多平台管理和研发人员关心的话 ...
- python编程基础之十八
字符串的查找和替换常用函数: str.count(sub,start = 0,end = len(str)) 计算sub 在str中出现的次数,[start,end)寻找区间 str.find(str ...
- e课表项目第二次冲刺周期第七天
昨天干了什么? 昨天我查找相关的资料实现对之前的信息连接数据库进行显示,完成修改的功能,并且返回到数据库当中.然后下午,我和我们小组的成员,讨论了第二个界面的具体功能和布局,我们一致同意,引用之前的第 ...
- wireshark分析https
0x01 分析淘宝网站的https数据流 打开淘宝 wireshark抓取到如下 第一部分: 因为https是基于http协议上的,可以看到首先也是和http协议一样的常规的TCP三次握手的连接建立, ...
- [JoyOI1519] 博彩游戏
题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目背景 Bob最近迷上了一个博彩游戏…… 题目描述 这个游戏的规则是这样的:每花一块钱可以 ...
- WebSocket学习简书
1.什么是Websocket? WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议. 2.单工,半双工和全双工通信? 在单工通信中,通信的信道是单向的,发送端 ...
- Vulnhub靶场渗透练习(一) Breach1.0
打开靶场 固定ip需要更改虚拟机为仅主机模式 192.168.110.140 打开网页http://192.168.110.140/index.html 查看源代码发现可以加密字符串 猜测base64 ...
- 电脑扫描不出u盘的解决办法
现象:u盘已插上但是设备和驱动器里却找不到 解决办法: 首先记下u盘名称,然后 我的电脑-右键-管理-设备管理器,找到u盘,卸载设备后重新插入u盘即可
- Vue + Js 面试宝典
https://github.com/rohan-paul/Awesome-JavaScript-Interviewshttps://github.com/nieyafei/front-end-int ...