The Jetson Nano Developer Kit is an AI computer for learning and for making.



一个推理框架,用于部署模型到嵌入式设备.



Four Steps to Deep Learning

https://github.com/dusty-nv/jetson-inference#system-setup

Hello AI World

环境准备

图像分类

核心类imageNet https://github.com/dusty-nv/jetson-inference/blob/master/imageNet.h

imageNet接收image作为input,输出每一种类别的概率.



在编译出来的build/aarch64/bin目录下有2个示例程序

/*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/

// include imageNet header for image recognition
#include <jetson-inference/imageNet.h>

// include loadImage header for loading images
#include <jetson-utils/loadImage.h>


// main entry point
int main( int argc, char** argv )
{
// a command line argument containing the image filename is expected,
// so make sure we have at least 2 args (the first arg is the program)
if( argc < 2 )
{
printf("my-recognition: expected image filename as argument\n");
printf("example usage: ./my-recognition my_image.jpg\n");
return 0;
}

// retrieve the image filename from the array of command line args
const char* imgFilename = argv[1];

// these variables will be used to store the image data and dimensions
// the image data will be stored in shared CPU/GPU memory, so there are
// pointers for the CPU and GPU (both reference the same physical memory)
float* imgCPU = NULL; // CPU pointer to floating-point RGBA image data
float* imgCUDA = NULL; // GPU pointer to floating-point RGBA image data
int imgWidth = 0; // width of the image (in pixels)
int imgHeight = 0; // height of the image (in pixels) // load the image from disk as float4 RGBA (32 bits per channel, 128 bits per pixel)
if( !loadImageRGBA(imgFilename, (float4**)&imgCPU, (float4**)&imgCUDA, &imgWidth, &imgHeight) )
{
printf("failed to load image '%s'\n", imgFilename);
return 0;
}

// load the GoogleNet image recognition network with TensorRT
// you can use imageNet::ALEXNET to load AlexNet model instead
imageNet* net = imageNet::Create(imageNet::GOOGLENET);

// check to make sure that the network model loaded properly
if( !net )
{
printf("failed to load image recognition network\n");
return 0;
}

// this variable will store the confidence of the classification (between 0 and 1)
float confidence = 0.0;

// classify the image with TensorRT on the GPU (hence we use the CUDA pointer)
// this will return the index of the object class that the image was recognized as (or -1 on error)
const int classIndex = net->Classify(imgCUDA, imgWidth, imgHeight, &confidence);

// make sure a valid classification result was returned
if( classIndex >= 0 )
{
// retrieve the name/description of the object class index
const char* classDescription = net->GetClassDesc(classIndex);

// print out the classification results
printf("image is recognized as '%s' (class #%i) with %f%% confidence\n",
classDescription, classIndex, confidence * 100.0f);
}
else
{
// if Classify() returned < 0, an error occurred
printf("failed to classify image\n");
} // free the network's resources before shutting down
delete net;

// this is the end of the example!
return 0;
}
  • 载入图像 loadImageRGBA

    加载的图像存储于共享内存,映射到cpu和gpu.实际的内存里的image只有1份,cpu/gpu pointer指向的都是同一份物理内存。

The loaded image will be stored in shared memory that's mapped to both the CPU and GPU. There are two pointers available for access in the CPU and GPU address spaces, but there is really only one copy of the image in memory. Both the CPU and GPU pointers resolve to the same physical memory, without needing to perform memory copies (i.e. cudaMemcpy()).

  • 载入神经网络模型

    imageNet::Create()

    GOOGLENET是一个预先训练好的模型,使用的数据集是ImageNet(注意不是imageNet对象).类别有1000个,包括了动植物,常见生活用品等.

    // load the GoogleNet image recognition network with TensorRT
// you can use imageNet::ALEXNET to load AlexNet model instead
imageNet* net = imageNet::Create(imageNet::GOOGLENET);

// check to make sure that the network model loaded properly
if( !net )
{
printf("failed to load image recognition network\n");
return 0;
}

  • 对图片进行分类

    Classify返回的是类别对应的index

    //this variable will store the confidence of the classification (between 0 and 1)
float confidence = 0.0;

// classify the image with TensorRT on the GPU (hence we use the CUDA pointer)
// this will return the index of the object class that the image was recognized as (or -1 on error)
const int classIndex = net->Classify(imgCUDA, imgWidth, imgHeight, &confidence);

  • 解释结果

   // make sure a valid classification result was returned
if( classIndex >= 0 )
{
// retrieve the name/description of the object class index
const char* classDescription = net->GetClassDesc(classIndex);

// print out the classification results
printf("image is recognized as '%s' (class #%i) with %f%% confidence\n",
classDescription, classIndex, confidence * 100.0f);
}
else
{
// if Classify() returned < 0, an error occurred
printf("failed to classify image\n");
}

These descriptions of the 1000 classes are parsed from ilsvrc12_synset_words.txt when the network gets loaded (this file was previously downloaded when the jetson-inference repo was built).



  • 退出

    程序退出前要释放掉资源
    // free the network's resources before shutting down
delete net;

// this is the end of the example!
return 0;
}

cmake文件

# require CMake 2.8 or greater
cmake_minimum_required(VERSION 2.8)

# declare my-recognition project
project(my-recognition)

# import jetson-inference and jetson-utils packages.
# note that if you didn't do "sudo make install"
# while building jetson-inference, this will error.
find_package(jetson-utils)
find_package(jetson-inference)

# CUDA and Qt4 are required
find_package(CUDA)
find_package(Qt4)

# setup Qt4 for build
include(${QT_USE_FILE})
add_definitions(${QT_DEFINITIONS})

# compile the my-recognition program
cuda_add_executable(my-recognition my-recognition.cpp)

# link my-recognition to jetson-inference library
target_link_libraries(my-recognition jetson-inference)

没什么要特别说的,主要的依赖如下:

  • find_package(jetson-utils)
  • find_package(jetson-inference)
  • target_link_libraries(my-recognition jetson-inference)

实时图片识别

上面的代码展示的是本地图片的识别,这一节给出实时的摄像头拍摄图片识别的demo.

  • iamgenet-camera

Jetson Nano Developer Kit的更多相关文章

  1. Jetson Nano系列教程3:GPIO

    摘要: JetsonTX1,TX2,AGXXavier和Nano开发板包含一个40引脚的GPIO头,类似于Raspberry PI中的40引脚头.这些GPO可以通过JetsonGPIOLibrary包 ...

  2. Jetson Nano系列教程1:烧写系统镜像

    下载镜像 NVIDIA官方为Jetson Nano Developer Kit (后面统称为Jetson Nano了)提供了SD卡版本的系统镜像,并且根据JetPack版本不断得在更新.所以你可以直接 ...

  3. Jetson Nano系列教程0:初识Jetson Nano

    关于Jetson Nano Developer Kit Jetson nano搭载四核Cortex-A57 MPCore 处理器,采用128 核 Maxwell™  GPU.支持JetPack SDK ...

  4. jetson nano 安装 snowboy 遇到的问题及处理

    Snowboy 是 KITT.AI 开发的一个高度可定制的热词检测引擎,当笔者的 jetson nano 加上话筒后,就立马尝试安装,但在安装过程中却发生了错误,所以把处理方式记录了下来以作备忘. 首 ...

  5. jetson nano开发使用的基础详细分享

    前言: 最近拿到一块jetson nano 2GB版本的板子,折腾了一下,从烧录镜像.修改配件等,准备一篇开箱基础文章给大家介绍一下这块AI开发板. 作者:良知犹存 转载授权以及围观:欢迎关注微信公众 ...

  6. [Jetson Nano]Jetson Nano快速入门

    NVIDIAJetsonNano开发套件是适用于制造商,学习者和开发人员的小型AI计算机.相比Jetson其他系列的开发板,官方报价只要99美金,可谓是相当有性价比.本文如何是一个快速入门的教程,主要 ...

  7. Jetson Nano 系列教程2:串口调试接口登录Jetson Nano

    连接Jetson Nano可以有多种方法,这里我们一一介绍一下.开始本章节前,请先参考上一章,烧写好镜像 直接连接 所谓直接连接,就是将Jetson Nano当做主机,连接HDMI屏幕,连接键盘和鼠标 ...

  8. Darknet YOLOv3 on Jetson Nano

    推荐比较好的博客:https://ai4sig.org/2019/06/jetson-nano-darknet-yolov3/ 用的AlexeyAB的版本,并且给出了yolov3和tiny的效果对比. ...

  9. 1、Jetson Nano 远程桌面XP问题

    jeston nano上网 方法3(最简单的方法) 最简单的方法真的特简单,用USB数据线连接主板的USB接口以及手机,打开手机的USB共享即可,若要使用静态IP,可在主板上修改配置文件,接口一般为u ...

随机推荐

  1. eShopOnContainers 知多少[10]:部署到 K8S | AKS

    1. 引言 断断续续,感觉这个系列又要半途而废了.趁着假期,赶紧再更一篇,介绍下如何将eShopOnContainers部署到K8S上,进而实现大家常说的微服务上云. 2. 先了解下 Helm 读过我 ...

  2. JavaWeb 乱码问题终极解决方案!

    经常有读者在公众号上问 JavaWeb 乱码的问题,昨天又有一个小伙伴问及此事,其实这个问题很简单,但是想要说清楚却并不容易,因为每个人乱码的原因都不一样,给每位小伙伴都把乱码的原因讲一遍也挺费时间的 ...

  3. Java8新特性之一:Lambda表达式

    Java8是自java5之后最重大的一次更新,它给JAVA语言带来了很多新的特性(包括编译器.类库.工具类.JVM等),其中最重要的升级是它给我们带来了Lambda表达式和Stream API. 1. ...

  4. Java进阶篇设计模式之八 ----- 责任链模式和命令模式

    前言 在上一篇中我们学习了结构型模式的享元模式和代理模式.本篇则来学习下行为型模式的两个模式, 责任链模式(Chain of Responsibility Pattern)和命令模式(Command ...

  5. OSPF 基础实验

    一.环境准备 1. 软件:GNS3 2. 路由:c7200 二.实验操作 实验要求: 1.掌握多区域的 OSPF 配置方法. 2.区别不同区域的路由. 3.掌握 OSPF 的路由汇总配置. 4.掌握  ...

  6. Windows核心编程第二章,字符串的表示以及宽窄字符的转换

    目录 Windows核心编程,字符串的表示以及宽窄字符的转换 1.字符集 1.1.双字节字符集DBCS 1.2 Unicode字符集 1.3 UTF-8编码 1.4 UTF - 32编码. 1.5 U ...

  7. TCP的三次握手与四次挥手

    TCP的三次握手与四次挥手 一.TCP(Transmission Control Protocol 传输控制协议) TCP是面向对连接,可靠的进程到进程通信的协议 TCP是提供全双工服务,即数据可在同 ...

  8. Vue.js 学习笔记 第1章 初识Vue.js

    本篇目录: 1.1 Vue.js 是什么 1.2 如何使用Vue.js 本章主要介绍与Vue.js有关的一些概念与技术,并帮助你了解它们背后相关的工作原理. 通过对本章的学习,即使从未接触过Vue.j ...

  9. linux open write lseek的API和应用

    1, open #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> int open(c ...

  10. .net momeryStream 读取为空问题

    问题 stream读取错误 我需要把用户上传的图片,加水印,然后保存到阿里云的oss.保存成功,但是保存的数据为空.唯一的异常 :ReadTimeout = “newPicStream.ReadTim ...