C++负数取模
预习:
r=余数
a=被除数
b=除数
c=商
a/b=c........r
r=a-(a/b)*b
一、下面的题目你能全做对吗?
1.7/4=?
2.7/(-4)=?
3.7%4=?
4.7%(-4)=?
5.(-7)/4=?
6.(-7)%4=?
7.(-7)/(unsigned)4=?
答案:
1
-1
3
3
-1
-3
1073741822
如过你全部答对,你可以无视后面的内容……
二、除法的取整分类
除法的取整分为三类:向上取整、向下取整、向零取整。
1.向上取整:向+∞方向取最接近精确值的整数。
在这种取整方式下,7/4=2,7/(-4)=-1,6/3=2,6/(-3)=-2
2.向下取整:向-∞方向取最接近精确值的整数。
在这种取整方式下,7/4=1,7/(-4)=-2,6/3=2,6/(-3)=-2
3.向零取整:向0方向取最接近精确值的整数,换言之就是舍去小数部分,因此又称截断取整。
在这种取整方式下,7/4=1,7/(-4)=-1,6/3=2,6/(-3)=-2
通过观察可以发现,无论是向上取整还是向下取整,(-a)/b==-(a/b)都不一定成立。
这给程序设计者带来了极大的麻烦。
而对于向零取整,(-a)/b==-(a/b)是成立的,以此,C/C++采用这种取整方式。
三、负数取模
回想小学的公式:被除数÷除数=商……余数。
由此可知,余数=被除数-商×除数 (*)
对C/C++而言,(*)式依然成立。并且,该式是解决负数取模问题的关键。
例一:7%(-4)=?
解:由C/C++向零取整的整除方式可知,7/(-4)=-1;
由(*)式知,余数=7-(-4)*(-1)=3.所以,7%(-4)=3
例二:(-7)%4=?
解:由C/C++向零取整的整除方式可知,(-7)/4=-1;
由(*)式知,余数=(-7)-4*(-1)=-3.所以,(-7)%4=-3
例三:(-7)%(-4)=?
解:由C/C++向零取整的整除方式可知,(-7)/(-4)=1;
由(*)式知,余数=(-7)-(-4)*1=-3.所以,(-7)%(-4)=-3
四、相关知识的拓展
1.对于有符号整数与无符号整数间的除法,C/C++会将有符号整数转换为无符号整数,需要特别注意的是,符号位并没有丢失,而是变成了数据位参与运算。这就是(-7)/(unsigned)4不等于-1,而等于1073741822的原因。
2.编译器对除法的优化
①在“无优化”条件下,编译器会在不影响正常调试的前提下,对除法进行简单的优化。
A.“常量/常量”型除法:编译器会直接计算出结果。
B.“变量/变量”型除法:无优化。
C.“变量/常量”型除法:若常量≠2^n,无优化;否则,除法将被转换为右移运算。由于由右移运算实现的整除实质上是向下取整,所以编译器会通过一些附加的指令在不产生分支结构的情况下将向下取整转换为向零取整。
以【变量/2^3】为例,反汇编代码如下:
mov eax,被除数
cdq ;若eax<0,则edx=0xFFFFFFFF;否则edx=0
and edx,7 ;若eax<0,则edx=7;否则edx=0
add eax,edx ;若eax<0,【(eax+7)/(2^3)】向下取整的值 与 【eax/(2^3)】向零取整的值相等,从而实现向零取整
sar eax,3 ;右移,完成除法
②在“O2优化”条件下,“变量/常量”型除法中,常量若≠2^n,也可以优化。此时,除法将被转换为乘法与右移的结合形式。例如,a/b=a*(1/b)=a*((2^n)/b)*(1/(2^n)),其中,((2^n)/b为MagicNumber,由编译器在编译过程中算出。这样a/b就变成了(a*MagicNumber)>>n,n的值由编译器选取。需要注意的是,本公式只是除法优化中的一个典型代表,编译器会根据除数对公式进行调整,但基本形式与原理是类似的。
转载地址:http://tieba.baidu.com/p/1881961036
——————————————————————————————————————————
以下摘录自C++ Primer(P130)
操作符%称为“求余”或“求模”操作符,该操作符的操作数只能为整型。
如果两个操作数为正,结果也为正;如果两个操作数都为负数,结果也为负数;如果一个操作数为正数,一个操作数为负数,求模结果的符号取决于机器。
当操作数中有一个为负,一个为正是,求模操作结果值的符号可依据分子(被除数)或分母(除数)的符号而定。如果求模的结果随分子的符号,则除出来的值向零一侧取整;如果求模与分母的符号匹配,则除出来的值向负无穷大一侧取整。
C++负数取模的更多相关文章
- CodeForces 450B (矩阵快速幂模板题+负数取模)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...
- 【转】C/C++除法实现方式及负数取模详解
原帖:http://blog.csdn.net/sonydvd123/article/details/8245057 一.下面的题目你能全做对吗? 1.7/4=? 2.7/(-4)=? 3.7%4=? ...
- C/C++除法实现方式及负数取模详解
一.下面的题目你能全做对吗? 1.7/4=? 2.7/(-4)=? 3.7%4=? 4.7%(-4)=? 5.(-7)/4=? 6.(-7)%4=? 7.(-7)/(unsigned)4=? 答案: ...
- python中的负数取模问题(一个大坑)
先来看一段代码 这是什么情况?为什么会出现这种结果.我们再来看看其它语言的执行结果 我们用golang.js.c分别算了一下,结果得到的结果都是一致的,但是python为啥不一样呢? 其实之所以这么做 ...
- C++负数类型转换,-1对256取模
最近在读C++ primer的时候,发现p32上写道:当我们赋给无符号类型一个超出它表示范围的值时,结果是初始值对无符号类型表示数值总数取模后的余数.因此,把-1赋值给8比特大小的unsigned c ...
- 位运算之——按位与(&)操作——(快速取模算法)
学习redis 字典结构,hash找槽位 求槽位的索引值时,用到了 hash值 & sizemask操作, 其后的scan操作涉及扫描顺序逻辑,对同模的槽位 按一定规则扫描! 其中涉及位运算 ...
- 取模性质,快速幂,快速乘,gcd和最小公倍数
一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p ...
- 【Java基础】14、位运算之——按位与(&)操作——(快速取模算法)
学习redis 字典结构,hash找槽位 求槽位的索引值时,用到了 hash值 & sizemask操作, 其后的scan操作涉及扫描顺序逻辑,对同模的槽位 按一定规则扫描! 其中涉及位运算 ...
- BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...
随机推荐
- Web Service进阶(六)SOAPBinding绑定方式异常 is not found. Have you run APT to generate them
当在类中填充相应方法时,提示如下错误: 出现以上错误的原因就是在注解中没有添加@SOAPBinding(style=SOAPBinding.Style.RPC)这句话.估计也与JDK的版本相关,这方面 ...
- #include <iostream>与#include <iostream.h>的区别
在新的C++标准中,生成新头文件的方法仅仅是将现有C++头文件名中的 .h 去掉.例如,<iostream.h> 变成了<iostream> ,<complex. ...
- [WinForm]最小化到系统托盘,右键退出
1.拉出一个notifyIcon1到用户界面,也可以NEW一个 2.拉出一个ContextMenuStrip控件,命名为mymenu,集合中增加退出 3.notifyIcon1的属性ContextMe ...
- Python学习笔记 - 迭代器Iterator
我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的genera ...
- Dynamics CRM 通过OData查询数据URI中包含中文的情况
filter条件如下"?$filter=new_name eq '采购主管' and new_entityname eq 'new_purchaseenquiry' ",如果用这个 ...
- 《java入门第一季》之面向对象(方法重写问题)
方法重载的引入:根据一个案例: /* 继承中成员方法的关系: A:子类中的方法和父类中的方法声明不一样,这个太简单. B:子类中的方法和父类中的方法声明一样,这个该怎么玩呢? 通过子类对象调用方法: ...
- C++多重继承与虚拟继承
本文只是粗浅讨论一下C++中的多重继承和虚拟继承. 多重继承中的构造函数和析构函数调用次序 我们先来看一下简单的例子: #include <iostream> using namespac ...
- 如何设计一个可用的web容器
之前在另外一个平台(http://www.jointforce.com/jfperiodical/article/1035)发表的一篇文章,现在发布到自己的博客上. 开发一个web容器涉及很多不同方面 ...
- Apache Hadoop 2.0.2-alpha
原文出处http://hadoop.apache.org/docs/r2.0.2-alpha/hadoop-yarn/hadoop-yarn-site/Federation.html HDFSF分为2 ...
- EBS R12安装升级(FRESH)(一)
from:http://nufeng.net/ebs-r12-fresh-installation-and-upgrades/ 文章目录[隐藏] 1 EBS安装前准备 1.1 硬件 1.2 虚拟机vm ...