C++负数取模
预习:
r=余数
a=被除数
b=除数
c=商
a/b=c........r
r=a-(a/b)*b
一、下面的题目你能全做对吗?
1.7/4=?
2.7/(-4)=?
3.7%4=?
4.7%(-4)=?
5.(-7)/4=?
6.(-7)%4=?
7.(-7)/(unsigned)4=?
答案:
1
-1
3
3
-1
-3
1073741822
如过你全部答对,你可以无视后面的内容……
二、除法的取整分类
除法的取整分为三类:向上取整、向下取整、向零取整。
1.向上取整:向+∞方向取最接近精确值的整数。
在这种取整方式下,7/4=2,7/(-4)=-1,6/3=2,6/(-3)=-2
2.向下取整:向-∞方向取最接近精确值的整数。
在这种取整方式下,7/4=1,7/(-4)=-2,6/3=2,6/(-3)=-2
3.向零取整:向0方向取最接近精确值的整数,换言之就是舍去小数部分,因此又称截断取整。
在这种取整方式下,7/4=1,7/(-4)=-1,6/3=2,6/(-3)=-2
通过观察可以发现,无论是向上取整还是向下取整,(-a)/b==-(a/b)都不一定成立。
这给程序设计者带来了极大的麻烦。
而对于向零取整,(-a)/b==-(a/b)是成立的,以此,C/C++采用这种取整方式。
三、负数取模
回想小学的公式:被除数÷除数=商……余数。
由此可知,余数=被除数-商×除数 (*)
对C/C++而言,(*)式依然成立。并且,该式是解决负数取模问题的关键。
例一:7%(-4)=?
解:由C/C++向零取整的整除方式可知,7/(-4)=-1;
由(*)式知,余数=7-(-4)*(-1)=3.所以,7%(-4)=3
例二:(-7)%4=?
解:由C/C++向零取整的整除方式可知,(-7)/4=-1;
由(*)式知,余数=(-7)-4*(-1)=-3.所以,(-7)%4=-3
例三:(-7)%(-4)=?
解:由C/C++向零取整的整除方式可知,(-7)/(-4)=1;
由(*)式知,余数=(-7)-(-4)*1=-3.所以,(-7)%(-4)=-3
四、相关知识的拓展
1.对于有符号整数与无符号整数间的除法,C/C++会将有符号整数转换为无符号整数,需要特别注意的是,符号位并没有丢失,而是变成了数据位参与运算。这就是(-7)/(unsigned)4不等于-1,而等于1073741822的原因。
2.编译器对除法的优化
①在“无优化”条件下,编译器会在不影响正常调试的前提下,对除法进行简单的优化。
A.“常量/常量”型除法:编译器会直接计算出结果。
B.“变量/变量”型除法:无优化。
C.“变量/常量”型除法:若常量≠2^n,无优化;否则,除法将被转换为右移运算。由于由右移运算实现的整除实质上是向下取整,所以编译器会通过一些附加的指令在不产生分支结构的情况下将向下取整转换为向零取整。
以【变量/2^3】为例,反汇编代码如下:
mov eax,被除数
cdq ;若eax<0,则edx=0xFFFFFFFF;否则edx=0
and edx,7 ;若eax<0,则edx=7;否则edx=0
add eax,edx ;若eax<0,【(eax+7)/(2^3)】向下取整的值 与 【eax/(2^3)】向零取整的值相等,从而实现向零取整
sar eax,3 ;右移,完成除法
②在“O2优化”条件下,“变量/常量”型除法中,常量若≠2^n,也可以优化。此时,除法将被转换为乘法与右移的结合形式。例如,a/b=a*(1/b)=a*((2^n)/b)*(1/(2^n)),其中,((2^n)/b为MagicNumber,由编译器在编译过程中算出。这样a/b就变成了(a*MagicNumber)>>n,n的值由编译器选取。需要注意的是,本公式只是除法优化中的一个典型代表,编译器会根据除数对公式进行调整,但基本形式与原理是类似的。
转载地址:http://tieba.baidu.com/p/1881961036
——————————————————————————————————————————
以下摘录自C++ Primer(P130)
操作符%称为“求余”或“求模”操作符,该操作符的操作数只能为整型。
如果两个操作数为正,结果也为正;如果两个操作数都为负数,结果也为负数;如果一个操作数为正数,一个操作数为负数,求模结果的符号取决于机器。
当操作数中有一个为负,一个为正是,求模操作结果值的符号可依据分子(被除数)或分母(除数)的符号而定。如果求模的结果随分子的符号,则除出来的值向零一侧取整;如果求模与分母的符号匹配,则除出来的值向负无穷大一侧取整。
C++负数取模的更多相关文章
- CodeForces 450B (矩阵快速幂模板题+负数取模)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...
- 【转】C/C++除法实现方式及负数取模详解
原帖:http://blog.csdn.net/sonydvd123/article/details/8245057 一.下面的题目你能全做对吗? 1.7/4=? 2.7/(-4)=? 3.7%4=? ...
- C/C++除法实现方式及负数取模详解
一.下面的题目你能全做对吗? 1.7/4=? 2.7/(-4)=? 3.7%4=? 4.7%(-4)=? 5.(-7)/4=? 6.(-7)%4=? 7.(-7)/(unsigned)4=? 答案: ...
- python中的负数取模问题(一个大坑)
先来看一段代码 这是什么情况?为什么会出现这种结果.我们再来看看其它语言的执行结果 我们用golang.js.c分别算了一下,结果得到的结果都是一致的,但是python为啥不一样呢? 其实之所以这么做 ...
- C++负数类型转换,-1对256取模
最近在读C++ primer的时候,发现p32上写道:当我们赋给无符号类型一个超出它表示范围的值时,结果是初始值对无符号类型表示数值总数取模后的余数.因此,把-1赋值给8比特大小的unsigned c ...
- 位运算之——按位与(&)操作——(快速取模算法)
学习redis 字典结构,hash找槽位 求槽位的索引值时,用到了 hash值 & sizemask操作, 其后的scan操作涉及扫描顺序逻辑,对同模的槽位 按一定规则扫描! 其中涉及位运算 ...
- 取模性质,快速幂,快速乘,gcd和最小公倍数
一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p ...
- 【Java基础】14、位运算之——按位与(&)操作——(快速取模算法)
学习redis 字典结构,hash找槽位 求槽位的索引值时,用到了 hash值 & sizemask操作, 其后的scan操作涉及扫描顺序逻辑,对同模的槽位 按一定规则扫描! 其中涉及位运算 ...
- BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...
随机推荐
- Learn Lua in 15 Minutes
原文地址:http://tylerneylon.com/a/learn-lua/ Learn Lua in 15 Minutes more or less For a more in-depth Lu ...
- Linux下修改主机名步骤
Linux下修改主机名为gpdb 步骤一.运行vi /etc/sysconfig/network命令 NETWORKING=yesHOSTNAME=gpdb 步骤二.运行hostname gpdb命令 ...
- 谈谈Ext JS的组件——布局的使用方法
概述 在Ext JS中,包含两类布局:组件类布局和容器类布局.由于有些组件是有不同的组件组合而成的,如字段就由标题和输入框构成,他们之间也是存在布局关系的,而这就需要组件类布局来处理组件内自己特有的布 ...
- pig limit 少于10行,会返回所有记录
my = limit g_log 3; STORE my INTO '/user/wizad/tmp/my' USING PigStorage(','); 这样会返回g_log的所有记录. 要大于等于 ...
- android:layout_gravity和gravity的区别
文章转自http://blog.csdn.net/shakespeare001/article/details/784346,给出了很详细的解释. 1.首先来看看Android:layout_grav ...
- iOS 动画总结—UIView动画
1.概述 UIKit直接将动画集成到UIView类中,实现简单动画的创建过程.UIView类定义了几个内在支持动画的属性声明,当这些属性发生改变时,视图为其变化过程提供内建的动画支持. 执行动画所需要 ...
- AngularJS进阶(三十四)Angular数据更新不及时问题探讨
Angular数据更新不及时问题探讨 前言 在修复控制角标正确变化过程中,发觉前端代码组织层次出现了严重问题.传递和共享数据时自己使用的是rootScope,为此造成了全局变量空间的污染.根据< ...
- Dynamics CRM2011 通过DeveloperToolkit在VS中部署遇到的问题
接上一篇继续,说个在部署的过程中我遇到了个问题:"Error registering plugins and/or workflows. Plug-in assembly does not ...
- spring揭秘 读书笔记 一 IoC初探
本文是王福强所著<<spring揭秘>>一书的读书笔记 ioc的基本概念 一个例子 我们看下面这个类,getAndPersistNews方法干了四件事 1 通过newsList ...
- Volley学习小结
1.概述 volley英文即是"齐射,并发",是谷歌在2013年推出的网络通信库,有如下特点: [1]通信更快,更简单 [2]Get.Post网络请求以及网络数据图像的高效的异步请 ...