Description

给定n,m,p(1≤n,m,p≤10​^5​​)

求 C_{n+m}^{m} \mod p

保证P为prime

C表示组合数。

一个测试点内包含多组数据。

Input

第一行一个整数T(T≤10),表示数据组数

第二行开始共T行,每行三个数n m p,意义如上

Output

共T行,每行一个整数表示答案。

Sample Input

2
1 2 5
2 1 5

Sample Output

3
3

题解

$Lucas$定理。

就是$C^m _n \mod p = C^{m/p} _{n/p}*C^{m \mod p} _{n \mod p} \mod p$。

证明:不会。记着就行。

代码实现方面,注意两点:

1.对于$C^{m/p} _{n/p}$部分可以继续使用$Lucas$定理递归求解。

2.求逆元,可以用费马小定理做快速幂,当然也可以线性预处理阶乘逆元。注意,若线性预处理,需要将$0$位赋为$1$(很好理解,不做解释)。

 //It is made by Awson on 2017.10.7
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = 1e5; int n, m, p;
int A[N+], B[N+]; int C(int n, int m, int p) {
if (m > n) return ;
return (LL)A[n]*B[n-m]%p*B[m]%p;
}
int Lucas(int n, int m, int p) {
if (!m) return ;
return (LL)C(n%p, m%p, p)*Lucas(n/p, m/p, p)%p;
}
void work() {
scanf("%d%d%d", &n, &m, &p);
A[] = B[] = A[] = B[] = ;
n += m;
for (int i = ; i <= p; i++)
B[i] = -(LL)(p/i)*B[p%i]%p;
for (int i = ; i <= p; i++)
A[i] = (LL)A[i-]*i%p,
B[i] = (LL)B[i-]*B[i]%p;
printf("%d\n", (Lucas(n, m, p)+p)%p);
}
int main() {
int t;
scanf("%d", &t);
while (t--)
work();
return ;
}

[Luogu 3807]【模板】卢卡斯定理的更多相关文章

  1. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  2. 【洛谷P3807】(模板)卢卡斯定理

    卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...

  3. 887. 求组合数 III(模板 卢卡斯定理)

    a,b都非常大,但是p较小 前边两种方法都会超时的  N^2 和NlongN  可以用卢卡斯定理  P*longN*longP     定义: 代码: import java.util.Scanner ...

  4. 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)

    [模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...

  5. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  6. 【Luogu3807】【模板】卢卡斯定理(数论)

    题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...

  7. P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 求 \(C_{m + n}^{m} \% p\) ( \(1\le n,m,p\le 10^5\) ) 错误日志: 数组开小(哇啊啊啊洼地hi阿偶我姑父阿贺佛奥UFO爱 ...

  8. 【刷题】洛谷 P3807 【模板】卢卡斯定理

    题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...

  9. 洛谷 P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...

  10. 洛谷——P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...

随机推荐

  1. 连接数据后,当执行查询语句报错:ORA-01219: 数据库未打开: 仅允许在固定表/视图中查询

    参考博客:http://blog.csdn.net/lanchengxiaoxiao/article/details/40982771 1.在cmd窗口通过sqlplus连接数据库 C:\Users\ ...

  2. I Know Alpha冲刺随笔集

    Alpha冲刺 Day1 Alpha冲刺 Day2 Alpha冲刺 Day3 Alpha冲刺 Day4 Alpha冲刺 Day5 Alpha冲刺 Day6 Alpha冲刺 Day7 Alpha冲刺 D ...

  3. C语言的第一次作业

    一.PTA实验作业 题目1. 温度转换 本题要求编写程序,计算华氏温度150°F对应的摄氏温度.计算公式:C=5×(F−32)/9,式中:C表示摄氏温度,F表示华氏温度,输出数据要求为整型. 1.实验 ...

  4. Beta冲刺 第六天

    Beta冲刺 第六天 1. 昨天的困难 1.对于设计模式的应用不熟悉,所以在应用上出现了很大的困难. 2.SSH中数据库的管理是用HQL语句实现的,所以在多表查询时出现了很大的问题. 3.页面结构太凌 ...

  5. 设计模式NO.2

    设计模式NO.2 本次博客内容为第二次设计模式的练习.根据老师的要求完成下列题目: 题目1 如果需要开发一个跨平台视频播放器,可以在不同操作系统平台(如Windows.Linux.UNIX等)上播放多 ...

  6. dede观看总结自己总结

    知识点一:{dede:arclist channelid="18" addfields="language,pfz" limit="0,5" ...

  7. 深度学习之 rnn 台词生成

    深度学习之 rnn 台词生成 写一个台词生成的程序,用 pytorch 写的. import os def load_data(path): with open(path, 'r', encoding ...

  8. 你能选择出,前几个元素吗?使用纯css

    面试被问到 ,你能选择出前几个元素吗?括弧只能使用css 我当时是一脸懵逼... 回去的路上思考一路 终于想到了解决办法 虽然为时已晚 但是觉得很有意义... 首先要用到 否定选择器 : :not() ...

  9. 阿里云API网关(8)开发指南-SDK下载

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  10. 详解get请求和post请求参数中文乱码的解决办法

    首先出现中文乱码的原因是tomcat默认的编码方式是"ISO-8859-1",这种编码方式以单个字节作为一个字符,而汉字是以两个字节表示一个字符的. 一,get请求参数中文乱码的解 ...