众所周知,__consumer__offsets是一个内部topic,对用户而言是透明的,除了它的数据文件以及偶尔在日志中出现这两点之外,用户一般是感觉不到这个topic的。不过我们的确知道它保存的是Kafka新版本consumer的位移信息。本文我们简单梳理一下这个内部topic(以1.0.0代码为分析对象)

一、何时被创建?

首先,我们先来看下 它是何时被创建的?__consumer_offsets创建的时机有很多种,主要包括:

  • broker响应FindCoordinatorRequest请求时
  • broker响应MetadataRequest显式请求__consumer_offsets元数据时

其中以第一种最为常见,而第一种时机的表现形式可能有很多,比如用户启动了一个消费者组(下称consumer group)进行消费或调用kafka-consumer-groups --describe等

二、消息种类

__consumer_offsets中保存的记录是普通的Kafka消息,只是它的格式完全由Kafka来维护,用户不能干预。严格来说,__consumer_offsets中保存三类消息,分别是:

  • Consumer group组元数据消息
  • Consumer group位移消息
  • Tombstone消息

2.1 Consumer group组元数据消息

我们都知道__consumer_offsets是保存位移的,但实际上每个消费者组的元数据信息也保存在这个topic。这些元数据包括:

这里不详细展开组元数据各个字段的含义。我们只需要知道组元数据消息也是保存在__consumer_offsets中即可。值得一提的是, 如果用户使用standalone consumer(即consumer.assign(****)方法),那么就不会写入这类消息,毕竟我们使用的是独立的消费者,而没有使用消费者组。

这类消息的key是一个二元组,格式是【版本+groupId】,这里的版本表征这类消息的版本号,无实际用途;而value就是上图所有这些信息打包而成的字节数组。

2.2 Consumer group组位移提交消息

如果只允许说出__consumer_offsets的一个功能,那么我们就记住这个好了:__consumer_offsets保存consumer提交到Kafka的位移数据。这句话有两个要点:1. 只有当consumer group向Kafka提交位移时才会向__consumer_offsets写入这类消息。如果你的consumer压根就不提交位移,或者你将位移保存到了外部存储中(比如Apache Flink的检查点机制或老版本的Storm Kafka Spout),那么__consumer_offsets中就是无位移数据;2. 这句话中的consumer既包含consumer group也包含standalone consumer。也就是说,只要你向Kafka提交位移,不论使用哪种java consumer,它都是向__consumer_offsets写消息。

这类消息的key是一个三元组,格式是【groupId + topic + 分区号】,value则是要提交的位移信息,如下图所示:

位移就是待提交的位移,提交时间是提交位移时的时间戳,而过期时间则是用户指定的过期时间。由于目前consumer代码在提交位移时并没有明确指定过期间隔,故broker端默认设置过期时间为提交时间+offsets.retention.minutes参数值,即提交1天之后自动过期。Kafka会定期扫描__consumer_offsets中的位移消息并删除掉那些过期的位移数据。

上图中还有个“自定义元数据”,实际上consumer允许用户在提交位移时指定一些特殊的自定义信息。我们不对此进行详细展开,因为java consumer根本就没有使用到它。相反地,Kafka Streams利用该字段来完成某些定制任务。

2.3 tombstone消息或Delete Mark消息

第三类消息成为tombstone消息或delete mark消息。这类消息只出现在源码中而不暴露给用户。它和第一类消息很像,key都是二元组【版本+groupId】,唯一的区别在于这类消息的消息体是null,即空消息体。何时写入这类消息?前面说过了,Kafka会定期扫描过期位移消息并删除之。一旦某个consumer group下已没有任何active成员且所有的位移数据都已被删除时,Kafka会将该group的状态置为Dead并向__consumer__offsets对应分区写入tombstone消息,表明要彻底删除这个group的信息。简单来说,这类消息就是用于彻底删除group信息的。

三、何时写入?

第一类消息是在组rebalance时写入的;第二类消息是在提交位移时写入的;第三类消息是在Kafka后台线程扫描并删除过期位移或者__consumer_offsets分区副本重分配时写入的。

四、消息留存策略

__consumer_offsets目前的留存策略是compact,__consumer_offsets会定期对消息内容进行compact操作——用户也可以同时启用两种留存策略来减少该topic所占的磁盘空间,不过要承担可能丢失位移数据的风险。

五、副本因子

__consumer_offest不受server.properties中num.partitions和default.replication.factor参数的制约。相反地,它的分区数和备份因子分别由offsets.topic.num.partitions和offsets.topic.replication.factor参数决定。这两个参数的默认值分别是50和1,表示该topic有50个分区,副本因子是1。鉴于位移和group元数据等信息都保存在该topic中,实际使用过程中很多用户都会将offsets.topic.replication.factor设置成大于1的数以增加可靠性,这是推荐的做法。不过在0.11.0.0之前,这个设置是有缺陷的:假设你设置了offsets.topic.replication.factor = 3,只要Kafka创建该topic时可用broker数<3,那么创建出来的__consumer_offsets的备份因子就是2。也就是说Kafka并没有尊重我们设置的offsets.topic.replication.factor参数。好在这个问题在0.11.0.0版本得到了解决,现在用户在使用时,一旦需要创建__consumer_offsets了Kafka一定会保证凑齐足量的broker才会开始创建,否则就抛出异常给用户。

日常使用中,另一个常见的问题是如何扩展该topic的副本因子。由于它依然是一个Kafka topic,因此我们可以调用bin/kafka-reassign-partitions.sh(bat)脚本来扩展replication factor。做法如下:

1. 构造一个json文件,如下所示,其中1,2,3表示3台broker的ID

{"version":1, "partitions":[
{"topic":"__consumer_offsets","partition":0,"replicas":[1,2,3]},
{"topic":"__consumer_offsets","partition":1,"replicas":[2,3,1]},
{"topic":"__consumer_offsets","partition":2,"replicas":[3,1,2]},
{"topic":"__consumer_offsets","partition":3,"replicas":[1,2,3]},
...
{"topic":"__consumer_offsets","partition":49,"replicas":[2,3,1]}
]}

2. 运行bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 --reassignment-json-file reassign.json --execute

如果一切正常,你会发现__consumer_offsets的replication factor已然被扩展为3。

六、如何删除group信息

首先明确一点,Kafka是会删除consumer group信息的,既包括位移信息,也包括组元数据信息。对于位移信息而言,前面提到过每条位移消息都设置了过期时间。每个Kafka broker在后台会启动一个线程,定期(由offsets.retention.check.interval.ms确定,默认10分钟)扫描过期位移,并删除之。而对组元数据而言,删除它们的条件有两个:1. 这个group下不能存在active成员,即所有成员都已经退出了group;2. 这个group的所有位移信息都已经被删除了。当满足了这两个条件后,Kafka后台线程会删除group运输局信息。

好了, 我们总说删除,那么Kafka到底是怎么删除的呢——正是通过写入具有相同key的tombstone消息。我们举个例子,假设__consumer_offsets当前保存有一条位移消息,key是【testGroupid,test, 0】(三元组),value是待提交的位移信息。无论何时,只要我们向__consumer_offsets相同分区写入一条key=【testGroupid,test, 0】,value=null的消息,那么Kafka就会认为之前的那条位移信息是可以删除的了——即相当于我们向__consumer_offsets中插入了一个delete mark。

再次强调一下,向__consumer_offsets写入tombstone消息仅仅是标记它之前的具有相同key的消息是可以被删除的,但删除操作通常不会立即开始。真正的删除操作是由log cleaner的Cleaner线程来执行的。

鉴于目前水平有限,能想到的就这么多。有相关问题的读者可以将问题发动评论区,如果具有较大的共性,我会添加到本文的末尾~~

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Menlo; color: #000000; background-color: #ffffff }
span.s1 { }
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Menlo; color: #000000; background-color: #ffffff }
span.s1 { }

关于Kafka __consumer_offests的讨论的更多相关文章

  1. 关于Kafka配额的讨论(2)

    继续前一篇的讨论.前文中提到了两大类配额管理:基于带宽的以及基于CPU线程使用时间的.本文着重探讨基于CPU线程时间的配额管理. 定义 这类配额管理被称为请求配额(request quota),管理起 ...

  2. 关于Kafka配额的讨论(1)

    Kafka自0.9.0.0版本引入了配额管理(quota management),旨在broker端对clients发送请求进行限流(throttling).目前Kafka支持两大类配额管理: 网络带 ...

  3. Kafka是分布式发布-订阅消息系统

    Kafka是分布式发布-订阅消息系统 https://www.biaodianfu.com/kafka.html Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apa ...

  4. DataPipeline |《Apache Kafka实战》作者胡夕:Apache Kafka监控与调优

    胡夕 <Apache Kafka实战>作者,北航计算机硕士毕业,现任某互金公司计算平台总监,曾就职于IBM.搜狗.微博等公司.国内活跃的Kafka代码贡献者. 前言 虽然目前Apache ...

  5. DataPipeline |ApacheKafka实战作者胡夕:Apache Kafka监控与调优

    https://baijiahao.baidu.com/s?id=1610644333184173190&wfr=spider&for=pc DataPipeline |ApacheK ...

  6. Spark Streaming揭秘 Day15 No Receivers方式思考

    Spark Streaming揭秘 Day15 No Receivers方式思考 在前面也有比较多的篇幅介绍了Receiver在SparkStreaming中的应用,但是我们也会发现,传统的Recei ...

  7. alpakka-kafka(1)-producer

    alpakka项目是一个基于akka-streams流处理编程工具的scala/java开源项目,通过提供connector连接各种数据源并在akka-streams里进行数据处理.alpakka-k ...

  8. Kafka水位(high watermark)与leader epoch的讨论

    ~~~这是一篇有点长的文章,希望不会令你昏昏欲睡~~~ 本文主要讨论0.11版本之前Kafka的副本备份机制的设计问题以及0.11是如何解决的.简单来说,0.11之前副本备份机制主要依赖水位(或水印) ...

  9. 关于Kafka日志留存策略的讨论

    关于Kafka日志留存(log retention)策略的介绍,网上已有很多文章.不过目前其策略已然发生了一些变化,故本文针对较新版本的Kafka做一次统一的讨论.如果没有显式说明,本文一律以Kafk ...

随机推荐

  1. 个人Source Insight使用设置笔记

    1.打开SourceInsight, 在菜单栏中点击Options-->Document Options 在显示的对话框中,点击Screen Fonts...., 可改变这个项目的字体,我选的是 ...

  2. 关于linux音频指南

    音频操作是linux系统下必不可少,如您需要设计一个播放器,那么音频就是其中的一部分. 方法/步骤 1 音调: 振动的频率;     音量: 振动的幅度;     音色: 不同介质有不同声音;     ...

  3. js中用var与不用var的区别

    var num = 1: 是在当前域中声明变量. 如果在方法中声明,则为局部变量(local variable):如果是在全局域中声明,则为全局变量. 而 num = 1: 事实上是对属性赋值操作.

  4. Idea(一) 安装与破解

    现在idea横行的时代,没用过idea都不好意思了,于是乎,我也下载感受下. 下载安装包和破解地址: 链接: https://pan.baidu.com/s/16OeiDw942JaPXKtc9Oz1 ...

  5. jdk1.7 tomcat-7安装

    由于软件下载地址经常有变动,所以不能直接wget,还是直接到网上点击下载 下载jdk http://www.oracle.com/technetwork/java/javase/downloads/j ...

  6. 远离压力,提高效率——Getting things done读书笔记

    一.确定时间.空间和工具   二.收集阶段:填充工作篮         1. 这有助于你认识到自己面对的工用量.         2. 同时让你清楚"隧道的终点"在哪        ...

  7. .net中的各种委托(Delegate、Action、Func)

    1.Delegate,委托的鼻祖 protected delegate int ClassDelegate(int x, int y);//定义委托类型及参数 static void Main(str ...

  8. Pivotal开源基于PostgreSQL的数据库Greenplum

    http://www.infoq.com/cn/news/2015/11/PostgreSQL-Pivotal 近日,Pivotal宣布开源大规模并行处理(MPP)数据库Greenplum,其架构是针 ...

  9. 几大时尚前端UI框架的IE支持

    这个文章的Topic比较符合我们这些身在Stone Age用户环境中的开发者所考虑的因素 1.先说目前最火最酷的:Semantic-UI 目前版本:0.17.0 Browser Support Las ...

  10. Go语言开发区块链只需180行代码

    区块链开发用什么语言?通过本文你将使用Go语言开发自己的区块链(或者说用go语言搭建区块链).理解哈希函数是如何保持区块链的完整性.掌握如何用Go语言编程创造并添加新的块.实现多个节点通过竞争生成块. ...