MxNet+R︱用R语言实现深度学习(单CPU/API接口,一)
MxNet有了亚马逊站台之后,声势大涨,加之接口多样化,又支持R语言所以一定要学一下。而且作为R语言的fans,为啥咱们R语言就不能上深度学习嘞~
——————————————————————————————
一、MxNet对R的API接口
MxNet提供给了R一个API接口,但是这个API接口也不是万能的,不同的操作系统有着不同的使用功能。
1、 Windows/Mac用户——只能CPU训练
可以通过下面的代码安装预编译的版本。这个版本会每周进行预编译,不过为了保证兼容性,只能使用CPU训练模型。
这个接口其不想pycaffe一样,调用本地的caffe,而是一个远端MxNet社团在维护的一个版本,不能算是正式的MxNet
install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("mxnet")
2、 Linux用户——兼GPU版本
详情可参考官网链接:http://mxnet.io/get_started/setup.html
二、官方案例一:多层感知器MLP
参考博文:mxnet:结合R与GPU加速深度学习
案例数据:mlbench包自带数据集
使用package:mxnet(之前博主在想,要用mxnet是否需要下载MxNet,但是这个API还是很给力的...)
1、准备数据
require(mlbench) require(mxnet) data(Sonar, package="mlbench") Sonar[,61] = as.numeric(Sonar[,61])-1 train.ind = c(1:50, 100:150) train.x = data.matrix(Sonar[train.ind, 1:60]) train.y = Sonar[train.ind, 61] test.x = data.matrix(Sonar[-train.ind, 1:60]) test.y = Sonar[-train.ind, 61]
2、mx.mlp函数模型训练
mx.set.seed(0) model <- mx.mlp(train.x, train.y, hidden_node=10, out_node=2,out_activation="softmax", num.round=20, array.batch.size=15, learning.rate=0.07, momentum=0.9, eval.metric=mx.metric.accuracy)
其中:
1、mx.set.seed(0),随机数设置不是之前的set.seed,因为如果要并行、分布式的话,需要一个更快、更效率的随机数生成器,于是重写了一个更好的
2、函数mx.mlp:mx.mlp(data训练自变量x,label训练因变量y,每个隐藏层的大小hidden_node,输出层的结点数out_node,激活函数类型out_activation,num.round,学习率learning.rate,动量momentum)
激活函数类型out_activation类型:softmax/tanh
其他函数类型跟mx.model.FeedForward.create,前馈模型一致:
num.round,迭代次数,默认10
array.batch.size,默认128,输入数组个数
eval.metric:评估函数
3、模型预测
preds = predict(model, test.x) pred.label = max.col(t(preds))-1 table(pred.label, test.y)
predict返回的两个概率:成为0的概率,成为1的概率,max.col找到了成为0/1,哪个概率值最大,就是哪个
——————————————————————————————
三、官方案例二:利用Symbol系统自定义节点——构造简单回归
参考:http://mxnet.io/tutorials/r/symbol.html
一般情况下,不同的深度学习架构都需要自己构建节点,而Tensorflow对节点十分看重,把tensor张量作为数据输入。
1、数据载入
data(BostonHousing, package="mlbench") train.ind = seq(1, 506, 3) train.x = data.matrix(BostonHousing[train.ind, -14]) train.y = BostonHousing[train.ind, 14] test.x = data.matrix(BostonHousing[-train.ind, -14]) test.y = BostonHousing[-train.ind, 14]
2、利用Symbol系统自定义节点
mxnet提供了一个叫做“Symbol”的系统,从而使我们可以定义结点之间的连接方式与激活函数等参数。
下面是一个定义没有隐藏层神经网络,模拟回归的简单例子:
# 定义输入数据
data <- mx.symbol.Variable("data")
# 完整连接的隐藏层
# data: 输入源
# num_hidden: 该层的节点数
fc1 <- mx.symbol.FullyConnected(data, num_hidden=1)
# 针对回归任务,定义损失函数
lro <- mx.symbol.LinearRegressionOutput(fc1)
输入数据mx.symbol.Variable,然后设置了一个节点mx.symbol.FullyConnected,设置了节点损失函数mx.symbol.LinearRegressionOutput
回归与分类的差别主要在于输出层的损失函数。这里我们使用了平方误差fc1(L1损失)来训练模型。
3、模型训练
mx.set.seed(0) model <- mx.model.FeedForward.create(lro, X=train.x, y=train.y, ctx=mx.cpu(), num.round=50, array.batch.size=20, learning.rate=2e-6, momentum=0.9, eval.metric=mx.metric.rmse)
ctx控制使用CPU还是GPU,ctx=mx.cpu(),ctx=mx.gpu()
eval.metric评估函数,包括”accuracy”,”rmse”,”mae” 和 “rmsle”
4、如何写新的评估函数
#定义一个函数
demo.metric.mae <- mx.metric.custom("mae", function(label, pred) {
res <- mean(abs(label-pred))
return(res)
})
#直接在eval.metric中体现
mx.set.seed(0)
model <- mx.model.FeedForward.create(lro, X=train.x, y=train.y, ctx=mx.cpu(), num.round=50, array.batch.size=20, learning.rate=2e-6, momentum=0.9, eval.metric=demo.metric.mae)
MxNet+R︱用R语言实现深度学习(单CPU/API接口,一)的更多相关文章
- R语言︱H2o深度学习的一些R语言实践——H2o包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...
- 碎片︱R语言与深度学习
笔者:受alphago影响,想看看深度学习,但是其在R语言中的应用包可谓少之又少,更多的是在matlab和python中或者是调用.整理一下目前我看到的R语言的材料: ---------------- ...
- R语言快速深度学习进行回归预测(转)
深度学习在过去几年,由于卷积神经网络的特征提取能力让这个算法又火了一下,其实在很多年以前早就有所出现,但是由于深度学习的计算复杂度问题,一直没有被广泛应用. 一般的,卷积层的计算形式为: 其中.x分别 ...
- 极限学习机︱R语言快速深度学习进行回归预测
本文转载于张聪的博客,链接:https://ask.hellobi.com/blog/zason/4543. 深度学习在过去几年,由于卷积神经网络的特征提取能力让这个算法又火了一下,其实在很多年以前早 ...
- 深度学习常用数据集 API(包括 Fashion MNIST)
基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 ...
- Flask框架学习笔记(API接口管理平台 V2.0)
博主今天把API接口管理平台发布到github了,这次是更新一些功能 如支持本地数据库sqlite3.优化了数据结构 技术方面跟之前V1.0相同,只增加生产本地数据:但是为了支持层级的参数,修改了数据 ...
- Flask框架学习笔记(API接口管理平台 V1.0)
今天博主终于完成了API接口管理平台,最后差的就是数据库的维护, 博主这里介绍下平台的设计原理,首先基于python,利用flask的web框架+bootstrap前端框架完成,先阶段完成了前台展示页 ...
- mxnet:结合R与GPU加速深度学习(转)
近年来,深度学习可谓是机器学习方向的明星概念,不同的模型分别在图像处理与自然语言处理等任务中取得了前所未有的好成绩.在实际的应用中,大家除了关心模型的准确度,还常常希望能比较快速地完成模型的训练.一个 ...
- mxnet:结合R与GPU加速深度学习
转载于统计之都,http://cos.name/tag/dmlc/,作者陈天奇 ------------------------------------------------------------ ...
随机推荐
- SpringMVC数据验证(AOP处理Errors和方法验证)
什么是JSR303? JSR 303 – Bean Validation 是一个数据验证的规范,2009 年 11 月确定最终方案. Hibernate Validator 是 Bean Valida ...
- [DeeplearningAI笔记]神经网络与深度学习4.深度神经网络
觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.2 深层神经网络中的前向传播 4.3 核对矩阵的维数 经验方法论 对于神经网络想增加得到没有bug的程序的概率的方法:需要仔细的思考矩阵的维 ...
- Python学习笔记(二):字典
字典由多个键及与其对应的值构成的键值对构成,字典中键唯一,值不唯一. 1)dict 函数: >>>items=[('name','lilei'),('age',12)] >&g ...
- spring boot 中实现兼容不同的请求类型的方法。
比如一个接口,既想实现请求参数是application/json,又想实现form提交,改怎么做呢?用postman去测试,发现不可能做到两全其美. 我有一个方法,就是不用requestbody,也可 ...
- Linux下php+imagemagick支持webp格式的图片
摘要 ImageMagick是一款功能强大的图片处理工具包,很多互联网应用中都会涉及到图片处理工作,比如切割.缩放.水印.格式转换等.ImageMagick就是一个理想的工具包. 安装基础依赖 先检查 ...
- 使用xUnit为.net core程序进行单元测试(3)
第1部分: http://www.cnblogs.com/cgzl/p/8283610.html 第2部分: http://www.cnblogs.com/cgzl/p/8287588.html 请使 ...
- 洛谷 [P4016] 负载平衡问题
贪心做法 第一眼看见觉得和均分纸牌差不多,然而因为这是环形的,并不能用均分纸牌的方法做,但是均分纸牌的思想仍然适用 首先我们假设平均数为sum1. 那么对于第1个人,我们假设他给第N个人K个糖果, 第 ...
- 开发板访问linux方法
1.使用网线分别将 PC 机与开发板连接到交换机. 2.保证 windows能 ping通 Linux. 2.1.关闭 windows 系统中的其他网络连接,只保留用来和交换机连接的网卡. 2.2.网 ...
- MySQL select语句直接导出数据
select * into outfile '文件存放路径' from 表名; (先记下来,还未测试)
- Linux双网卡搭建NAT服务器之网络应用
一:拓扑.网络结构介绍 Eth1 外网卡的IP 地址, GW和DNS 按照提供商提供配置.配置如下: IP:114.242.25.18 NETMASK:255.255.255.0 GW:114.242 ...