原题请见《左偏树的特点及其应用》BY 广东省中山市第一中学 黄源河

luogu

题意

给出序列\(a[1...n]\),要求构造一个不下降序列\(b[1...n]\)使得\(\sum_{i=1}^{n}|a_i-b_i|\)最小。

sol

首先很自然地能够想到,构造出来的序列\(b[1...n]\)一定可以划分成\(m\)段\((1\le{m}\le{n})\),每段内数字全部相同。

我们把每一段的数字提取出来分别为\(c[1...m]\)。

如果对每一段的\(c[i]\)都取最优的话,那么一定是去这一段中\(a[i]\)的中位数。

但是取中位数可能会导致序列\(c\)不满足非降,这个时候就需要把相邻的两个不合法的段合并成一段。

所以就需要维护中位数。

左偏树。对于一个长度为\(x\)的段,左偏树中保存这一段中前\(\lfloor\frac{x+1}{2}\rfloor\)小的数字,易知这些数里面最大的那个就是中位数,合并的时候直接合并两棵左偏树。

因为\(\lfloor\frac{x+1}{2}\rfloor+\lfloor\frac{y+1}{2}\rfloor=\lfloor\frac{x+y+1}{2}\rfloor-1\)当且仅当\(x,y\)均为奇数,所以这种情况要弹掉堆顶元素。

复杂度\(O(n\log{n})\)

注:洛谷的题目是要求构造一个递增序列,可以采用减下标的方法,即输入时把每个数都减去对应下表,输出时再加上,这样就可以完成不下降序列和递增序列的转换。

code

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
inline int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 1e6+5;
int n,key[N],ls[N],rs[N],dis[N],S[N],ed[N],top;
ll ans;
int merge(int A,int B)
{
if (!A||!B) return A|B;
if (key[A]<key[B]) swap(A,B);
rs[A]=merge(rs[A],B);
if (dis[ls[A]]<dis[rs[A]]) swap(ls[A],rs[A]);
dis[A]=dis[rs[A]]+1;
return A;
}
int main()
{
n=gi();
for (int i=1;i<=n;++i) key[i]=gi();
for (int i=1;i<=n;++i)
{
++top;S[top]=i;ed[top]=i;
while (top>1&&key[S[top]]<key[S[top-1]])
{
--top;
S[top]=merge(S[top],S[top+1]);
if (((ed[top+1]-ed[top])&1)&&((ed[top]-ed[top-1])&1))
S[top]=merge(ls[S[top]],rs[S[top]]);
ed[top]=ed[top+1];
}
}
for (int i=1;i<=top;++i)
for (int j=ed[i-1]+1;j<=ed[i];++j)
ans+=abs(key[j]-key[S[i]]);
printf("%lld\n",ans);
return 0;
}

强行再贴一个洛谷上那道题的代码

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
inline int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 1e6+5;
int n,key[N],ls[N],rs[N],dis[N],S[N],ed[N],top;
ll ans;
int merge(int A,int B)
{
if (!A||!B) return A|B;
if (key[A]<key[B]) swap(A,B);
rs[A]=merge(rs[A],B);
if (dis[ls[A]]<dis[rs[A]]) swap(ls[A],rs[A]);
dis[A]=dis[rs[A]]+1;
return A;
}
int main()
{
n=gi();
for (int i=1;i<=n;++i) key[i]=gi()-i;
for (int i=1;i<=n;++i)
{
++top;S[top]=i;ed[top]=i;
while (top>1&&key[S[top]]<key[S[top-1]])
{
--top;
S[top]=merge(S[top],S[top+1]);
if (((ed[top+1]-ed[top])&1)&&((ed[top]-ed[top-1])&1))
S[top]=merge(ls[S[top]],rs[S[top]]);
ed[top]=ed[top+1];
}
}
for (int i=1;i<=top;++i)
for (int j=ed[i-1]+1;j<=ed[i];++j)
ans+=abs(key[j]-key[S[i]]);
printf("%lld\n",ans);
for (int i=1;i<=top;++i)
for (int j=ed[i-1]+1;j<=ed[i];++j)
printf("%d ",key[S[i]]+j);
puts("");return 0;
}

[Baltic2004]数字序列的更多相关文章

  1. [Luogu4331][Baltic2004]数字序列

    原题请见<左偏树的特点及其应用>BY 广东省中山市第一中学 黄源河 luogu 题意 给出序列\(a[1...n]\),要求构造一个不下降序列\(b[1...n]\)使得\(\sum_{i ...

  2. 找出数组中最长的连续数字序列(JavaScript实现)

    原始题目: 给定一个无序的整数序列, 找最长的连续数字序列. 例如: 给定[100, 4, 200, 1, 3, 2], 最长的连续数字序列是[1, 2, 3, 4]. 小菜给出的解法: functi ...

  3. 九度OJ 1544 数字序列区间最小值

    题目地址:http://ac.jobdu.com/problem.php?pid=1544 题目描述: 给定一个数字序列,查询任意给定区间内数字的最小值. 输入: 输入包含多组测试用例,每组测试用例的 ...

  4. 【BZOJ】【1049】【HAOI2006】数字序列

    DP 第一问比较水……a[i]-=i 以后就变成最长不下降子序列问题了,第二问这个结论好神奇,考试的时候怎么破?大胆猜想,不用证明?TAT 题解:http://pan.baidu.com/share/ ...

  5. kaggle之数字序列预测

    数字序列预测 Github地址 Kaggle地址 # -*- coding: UTF-8 -*- %matplotlib inline import pandas as pd import strin ...

  6. string 数字序列大小比较

    string 数字序列大小比较 string.compare string a = "022"; string b="1"; 比较结果 '022' < ' ...

  7. codevs 2622 数字序列

    2622 数字序列 提交地址:http://codevs.cn/problem/2622/  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 黄金 Gold     题目描述 De ...

  8. Shell生成数字序列

    转自http://kodango.com/generate-number-sequence-in-shell Shell里怎么输出指定的数字序列: for i in {1..5}; do echo $ ...

  9. 《剑指offer》第四十四题(数字序列中某一位的数字)

    // 面试题44:数字序列中某一位的数字 // 题目:数字以0123456789101112131415…的格式序列化到一个字符序列中.在这 // 个序列中,第5位(从0开始计数)是5,第13位是1, ...

随机推荐

  1. React项目模板-从项目搭建到部署

    前一段时间做了一个小项目,时间比较紧,就一个人月.最终希望能够通过微信公众号链接启动应用. 项目的业务细节就不多说了,主要是想分享一下做这个项目技术方面的一些经验. 技术选型 参考范围大致三种:Ang ...

  2. Hive metastore表结构设计分析

    今天总结下,Hive metastore的结构设计.什么是metadata呢,对于它的描述,可以理解为数据的数据,主要是描述数据的属性的信息.它是用来支持如存储位置.历史数据.资源查找.文件记录等功能 ...

  3. gitlab项目迁移

    ALL Git* => Gitlab Nothing, Just copy the git URL to gitlab(类似于 fork) 使用 Git Mirror 無痛轉移 Git Serv ...

  4. Mysql(三)-2:数据类型

    一 介绍 存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的宽度,但宽度是可选的 详细参考: http://www.runoob.com/mysql/mysql-data ...

  5. PV IP UV

    PV(访问量) Page View,页面浏览量. 具体的说,就是在一天内,该网站的页面总共访问了多少次 IP(独立IP) 一天内访问网站的IP数量 UV(独立访客) Unique Visitor 一般 ...

  6. 关于HTTP,你知道哪些?

    HTTP简介 HTTP 的全称是 Hypertext Transfer Protocol,超文本传输协议 规定客户端和服务器之间的数据传输格式 让客户端和服务器能有效地进行数据沟通 HTTP 协议是网 ...

  7. 来了解并防范一下CSRF攻击提高网站安全

    看一下我从网上找的原理图,结合举例描述,多看一遍你就知道怎么回事了. CSRF是什么呢?CSRF全名是Cross-site request forgery,是一种对网站的恶意利用,CSRF比XSS更具 ...

  8. Python 实现单例模式的一些思考

    一.问题:Python中如何实现单例模式 单例模式指一个类只能实例化一个对象. 二.解决方案: 所有资料参考于: http://python.jobbole.com/87294/ https://ww ...

  9. c# 委托(Func、Action)

    以前自己写委托都用 delegate, 最近看组里的大佬们都用 Func , 以及 Action 来实现, 代码简洁了不少, 但是看得我晕晕乎乎. 花点时间研究一下,记录一下,以便后期的查阅. 1.F ...

  10. ubuntu14.04 安装Jenkins

    wget -q -O - http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key | sudo apt-key add - sudo sh -c 'ec ...