4827: [Hnoi2017]礼物

题意:略


以前做的了

化一化式子就是一个卷积和一些常数项

我记着确定调整值还要求一下导...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<18)+5, INF=1e9+5;
const double PI = acos(-1.0);
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} struct meow {
double x, y;
meow(double a=0, double b=0) : x(a), y(b) {}
};
meow operator + (meow a, meow b) {return meow(a.x + b.x, a.y + b.y);}
meow operator - (meow a, meow b) {return meow(a.x - b.x, a.y - b.y);}
meow operator * (meow a, meow b) {return meow(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd;
namespace fft {
int n, rev[N];
cd omega[N], omegaInv[N];
void init(int lim) {
n=1; int k=0; while(n<lim) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
for(int i=0; i<n; i++) {
omega[i] = cd(cos(2*PI/n*i), sin(2*PI/n*i));
omegaInv[i] = conj(omega[i]);
}
} void dft(cd *a, int flag) {
cd *w = flag > 0 ? omega : omegaInv;
for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m = l>>1;
for(cd *p=a; p!=a+n; p+=l)
for(int k=0; k<m; k++) {
cd t = w[n/l*k] * p[k+m];
p[k+m] = p[k] - t;
p[k] = p[k] + t;
}
}
if(flag == -1) for(int i=0; i<n; i++) a[i].x /= n;
} void mul(cd *a, cd *b) {
dft(a, 1); dft(b, 1);
for(int i=0; i<n; i++) a[i] = a[i] * b[i];
dft(a, -1);
}
} int n, m, x[N], y[N]; ll ans, sum, t;
cd a[N], b[N];
int main() {
freopen("in", "r", stdin);
n=read(); m=read();
for(int i=1; i<=n; i++) a[i].x = x[i] = read(), ans += x[i] * x[i];
for(int i=1; i<=n; i++) b[n-i+1].x = b[n-i+1+n].x = y[i] = read(), ans += y[i] * y[i], sum += x[i] - y[i];
sum = abs(sum);
ll c = floor((double) sum / n + 0.5); //printf("c %lld\n", c);
ans += c * (n * c - 2 * sum); //printf("ans %lld\n", ans);
fft::init(n+n+1);
fft::mul(a, b);
for(int i=n+1; i<=n+n; i++) t = max(t, (ll)floor(a[i].x + 0.5));// printf("a %d %lf\n", i, a[i].x);
t *= 2;
//printf("t %lld\n", t);
printf("%lld", ans - t);
}

bzoj 4827: [Hnoi2017]礼物 [fft]的更多相关文章

  1. bzoj 4827 [Hnoi2017]礼物——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 式子就是 \sum_{i=0}^{n-1}(a[ i ] - b[ i+k ] + c ...

  2. bzoj 4827 [Hnoi2017] 礼物 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 首先,旋转对应,可以把 b 序列扩展成2倍,则 a 序列对应到的还是一段区间: 再把 ...

  3. BZOJ 4827 [Hnoi2017]礼物 ——FFT

    题目上要求一个循环卷积的最小值,直接破环成链然后FFT就可以了. 然后考虑计算的式子,可以分成两个部分分开计算. 前半部分FFT,后半部分扫一遍. #include <map> #incl ...

  4. bzoj 4827: [HNOI2017]礼物 (FFT)

    一道FFT 然而据说暴力可以水70分 然而我省选的时候看到了直接吓傻了  连暴力都没打 太弱了啊QAQ emmmm 详细的拆开就看其他题解吧233 最后那一步卷积其实我一直没明白 后来画画图终于懂了 ...

  5. bzoj 4827: [Hnoi2017]礼物【FFT】

    记得FFT要开大数组!!开到快MLE的那种!!我这个就是例子TAT,5e5都RE了 在这题上花的时间太多了,还是FFT不太熟练. 首先看70分的n方做法:从0下标开始存,先n--,把a数组倍增,然后枚 ...

  6. 【刷题】BZOJ 4827 [Hnoi2017]礼物

    Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...

  7. BZOJ 4827: [Hnoi2017]礼物 FFT_多项式_卷积

    题解稍后在笔记本中更新 Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r&q ...

  8. BZOJ:4827: [Hnoi2017]礼物

    [问题描述] 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的 ...

  9. 4827: [Hnoi2017]礼物

    4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{ ...

随机推荐

  1. 模板类-bitset

    stl提供了std::bitset模板类,定义:bitset <32> bitvec;尖括号中的为长度,这条语句把bitvec定义为含有32个的bitset对象.和容器一样,按位置来访问他 ...

  2. MySQL的ibdata1文件占用过大

    处理MySQL的ibdata1文件过大问题 本人遇到一次在安装zabbix监控的时候,yum安装的MySQL数据库,后面用了一段时间发现data目录下的ibdata1的空间特别大,反而我的zabbix ...

  3. H5基础浏览器兼容性

    <!DOCTYPE HTML><html><body> <video width="320" height="240" ...

  4. easyUI返回类型total,rows

  5. js定时器之setTimeout的使用

    之前用过定时器,只不过用的不是很多,关于js定时器,一般而言我们很容易想到setInterval和setTimeout这两种. 刚开始学js定时器时,记住了setInterval,该方法一般用于每隔多 ...

  6. JavaScript函数声明提升

    首先,JavaScript中函数有两种创建方式,即函数声明.函数表达式两种. 1.函数声明. function boo(){ console.log(123); } boo() 2.函数表达式. va ...

  7. JAR包介绍大全用途作用详解JAVA

    jta.jar 标准JTA API必要commons-collections.jar 集合类 必要antlr.jar  ANother Tool for Language Recognition 必要 ...

  8. g4e基础篇#6 了解Git历史记录

    章节目录 前言 1. 基础篇: 为什么要使用版本控制系统 Git 分布式版本控制系统的优势 Git 安装和设置 了解Git存储库(Repo) 起步 1 – 创建分支和保存代码 起步 2 – 了解Git ...

  9. 互联网公司为啥不使用mysql分区表?

    转:http://www.cnblogs.com/zhulin516114/p/7306708.html 缘起:有个朋友问我分区表在58的应用,我回答不出来,在我印象中,百度.58都没有听说有分区表相 ...

  10. linux_DNS

    linux其配置文件 : /etc/resolv.conf nameserver 223.5.5.5 nameserver 223.6.6.6 # 这两个解析地址为阿里云解析地址,格式也是这样 什么是 ...