4827: [Hnoi2017]礼物

题意:略


以前做的了

化一化式子就是一个卷积和一些常数项

我记着确定调整值还要求一下导...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<18)+5, INF=1e9+5;
const double PI = acos(-1.0);
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} struct meow {
double x, y;
meow(double a=0, double b=0) : x(a), y(b) {}
};
meow operator + (meow a, meow b) {return meow(a.x + b.x, a.y + b.y);}
meow operator - (meow a, meow b) {return meow(a.x - b.x, a.y - b.y);}
meow operator * (meow a, meow b) {return meow(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd;
namespace fft {
int n, rev[N];
cd omega[N], omegaInv[N];
void init(int lim) {
n=1; int k=0; while(n<lim) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
for(int i=0; i<n; i++) {
omega[i] = cd(cos(2*PI/n*i), sin(2*PI/n*i));
omegaInv[i] = conj(omega[i]);
}
} void dft(cd *a, int flag) {
cd *w = flag > 0 ? omega : omegaInv;
for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m = l>>1;
for(cd *p=a; p!=a+n; p+=l)
for(int k=0; k<m; k++) {
cd t = w[n/l*k] * p[k+m];
p[k+m] = p[k] - t;
p[k] = p[k] + t;
}
}
if(flag == -1) for(int i=0; i<n; i++) a[i].x /= n;
} void mul(cd *a, cd *b) {
dft(a, 1); dft(b, 1);
for(int i=0; i<n; i++) a[i] = a[i] * b[i];
dft(a, -1);
}
} int n, m, x[N], y[N]; ll ans, sum, t;
cd a[N], b[N];
int main() {
freopen("in", "r", stdin);
n=read(); m=read();
for(int i=1; i<=n; i++) a[i].x = x[i] = read(), ans += x[i] * x[i];
for(int i=1; i<=n; i++) b[n-i+1].x = b[n-i+1+n].x = y[i] = read(), ans += y[i] * y[i], sum += x[i] - y[i];
sum = abs(sum);
ll c = floor((double) sum / n + 0.5); //printf("c %lld\n", c);
ans += c * (n * c - 2 * sum); //printf("ans %lld\n", ans);
fft::init(n+n+1);
fft::mul(a, b);
for(int i=n+1; i<=n+n; i++) t = max(t, (ll)floor(a[i].x + 0.5));// printf("a %d %lf\n", i, a[i].x);
t *= 2;
//printf("t %lld\n", t);
printf("%lld", ans - t);
}

bzoj 4827: [Hnoi2017]礼物 [fft]的更多相关文章

  1. bzoj 4827 [Hnoi2017]礼物——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 式子就是 \sum_{i=0}^{n-1}(a[ i ] - b[ i+k ] + c ...

  2. bzoj 4827 [Hnoi2017] 礼物 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 首先,旋转对应,可以把 b 序列扩展成2倍,则 a 序列对应到的还是一段区间: 再把 ...

  3. BZOJ 4827 [Hnoi2017]礼物 ——FFT

    题目上要求一个循环卷积的最小值,直接破环成链然后FFT就可以了. 然后考虑计算的式子,可以分成两个部分分开计算. 前半部分FFT,后半部分扫一遍. #include <map> #incl ...

  4. bzoj 4827: [HNOI2017]礼物 (FFT)

    一道FFT 然而据说暴力可以水70分 然而我省选的时候看到了直接吓傻了  连暴力都没打 太弱了啊QAQ emmmm 详细的拆开就看其他题解吧233 最后那一步卷积其实我一直没明白 后来画画图终于懂了 ...

  5. bzoj 4827: [Hnoi2017]礼物【FFT】

    记得FFT要开大数组!!开到快MLE的那种!!我这个就是例子TAT,5e5都RE了 在这题上花的时间太多了,还是FFT不太熟练. 首先看70分的n方做法:从0下标开始存,先n--,把a数组倍增,然后枚 ...

  6. 【刷题】BZOJ 4827 [Hnoi2017]礼物

    Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...

  7. BZOJ 4827: [Hnoi2017]礼物 FFT_多项式_卷积

    题解稍后在笔记本中更新 Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r&q ...

  8. BZOJ:4827: [Hnoi2017]礼物

    [问题描述] 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的 ...

  9. 4827: [Hnoi2017]礼物

    4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{ ...

随机推荐

  1. BZOJ2441: [中山市选2011]小W的问题

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2441 首先要注意到x1>x3且x5>x3(要是没有这个设定就是树状数组水题了.. ...

  2. Prim最小生成树板子

    普里姆算法可以称为"加点法",每次迭代选择代价最小的边对应的点,加入到最小生成树中.算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点. 邻接矩阵存图  时间复杂度O(n^2 ...

  3. dfs学习总结

    今天做到了dfs的训练,感觉和bfs有相似之处,接下来用一道题来总结一下方法,可类比bfs. 上题: Description There is a rectangular room, covered ...

  4. win10系统下如何用命令行的方式打开画图软件

    按 win + r 后输入命令 mspaint  再 回车 即可!如下图所示:

  5. JAVA经典算法面试40题及答案

    现在是3月份,也是每年开年企业公司招聘的高峰期,同时有许多的朋友也出来找工作.现在的招聘他们有时会给你出一套面试题或者智力测试题,也有的直接让你上机操作,写一段程序.算法的计算不乏出现,基于这个原因我 ...

  6. 废旧鼠标先别丢,用来学习nRF52832 的QDEC

    刚发现nRF52832有一个 QDEC,SDK13.0中还有驱动,但是不太友好.  如果大家有废旧鼠标,建议拆一个编码器下来“学习”.鼠标的一般原理如下: 图一 图中那个SW4 ALPS EC10E  ...

  7. ceph-deploy出错UnableToResolveError Unable to resolve host

    背景 ps:在本文中,假设我系统的hostname为node1. 使用ceph-deploy命令搭建Ceph集群,执行ceph new node1时,出现如下错误: [node1][INFO ] Ru ...

  8. MFC中菜单的命令响应顺序

    响应只可以由Doc,View,MainFrame以及APP四个类完成. 响应顺序是: 点击某菜单项,框架类最先接到菜单命令消息. 框架类把接收到得这个消息交给它的子窗口,即视图类. 视图类根据命令消息 ...

  9. zzuli oj 1134 字符串转换

    题目链接: https://acm.zzuli.edu.cn/zzuliacm/problem.php?id=1134 Description 输入一个以回车结束的字符串,它由数字和字母组成,请过滤掉 ...

  10. Anndroid 使用相机或相册打开图片

    安卓操作相机or相册 笔者做这方面测试的时候,没遇到什么大坑基本上,需要注意的有两点 1.   使用相册打开读取图片需要使用运行时权限,而且还是要在AndroidManifest.xml中进行权限声明 ...