uva 10870
https://vjudge.net/problem/UVA-10870
题意:
f(n) = a1f(n − 1) + a2f(n − 2) + a3f(n − 3) + . . . + adf(n − d), for n > d
给出f(1),f(2) ... f(d) 以及a1,a2...ad,然后给出一个n和m的值,计算f(n) % m的值
思路:
矩阵快速幂模板题,只是构建矩阵比较困难,其实这题的构建矩阵是比较简单的,这题的模型也是一个相当广泛的模型。
|a1 a2 a3 a4 a5| | f[n] | | f[n+1] |
|1 | | f[n-1] | | f[n] |
| 1 | * | f[n-2] | = | f[n-1] | (空白处为0)
| 1 | | f[n-3] | | f[n-2] |
| 1 | | f[n-4] | | f[n-3] |
就是这样一个关系,可以用手推一下。
f(n) = A^(n-d) * f(d);
之后就直接套模板啦。
最后的f(n)其实是通过得到的结果矩阵的第一行乘以f(d)这个矩阵得到的,只不过乘的时候要关注原矩阵的顺序,别乘反了。
注意在n <= d的时候是直接取余输出的。(矩阵乘法的时候也要一边乘,一边取余)。
代码:
#include <stdio.h>
#include <string.h> long long d,n,m; long long f[]; struct matrix
{
long long a[][];
}; matrix mul(matrix x,matrix y)
{
matrix c; for (int i = ;i < d;i++)
for (int j = ;j < d;j++)
{
c.a[i][j] = ; for (int k = ;k < d;k++)
{
c.a[i][j] = (c.a[i][j] + x.a[i][k] * y.a[k][j] % m) % m;
}
} return c;
} void solve(matrix t,long long o)
{
matrix e; memset(e.a,,sizeof(e.a)); for (int i = ;i < d;i++)
e.a[i][i] = ; while (o)
{
if (o & )
{
e = mul(e,t);
} o >>= ; t = mul(t,t);
} long long res = ; for (int i = ;i < d;i++)
res = (res + e.a[][i] * f[d-i-]) % m; printf("%lld\n",res);
} int main()
{ while (scanf("%lld%lld%lld",&d,&n,&m) != EOF)
{
if (d == && n == && m == ) break; matrix p; memset(p.a,,sizeof(p.a)); for (int i = ;i < d;i++)
scanf("%lld",&p.a[][i]); for (int i = ;i < d;i++)
p.a[i][i-] = ; for (int i = ;i < d;i++)
scanf("%lld",&f[i]); if (n <= d)
{
printf("%lld\n",f[n-] % m); continue;
} solve(p,n-d);
} return ;
}
uva 10870的更多相关文章
- UVA 10870 - Recurrences(矩阵高速功率)
UVA 10870 - Recurrences 题目链接 题意:f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), ...
- UVa 10870 - Recurrences
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- 矩阵快速幂 UVA 10870 Recurrences
题目传送门 题意:f(n) = a1f(n − 1) + a2f(n − 2) + a3f(n − 3) + . . . + adf(n − d), for n > d,求f (n) % m.训 ...
- UVa 10870 & 矩阵快速幂
题意: 求一个递推式(不好怎么概括..)的函数的值. 即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d); SOL: 根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可 ...
- UVa 10870 (矩阵快速幂) Recurrences
给出一个d阶线性递推关系,求f(n) mod m的值. , 求出An-dv0,该向量的最后一个元素就是所求. #include <iostream> #include <cstdio ...
- Recurrences UVA - 10870 (斐波拉契的一般形式推广)
题意:f(n) = a1f(n−1) + a2f(n−2) + a3f(n−3) + ... + adf(n−d), 计算这个f(n) 最重要的是推出矩阵. #include<cstdio> ...
- UVA 10870 Recurrences(矩阵乘法)
题意 求解递推式 \(f(n)=a_1*f(n-1)+a_2*f(n-2)+....+a_d*f(n-d)\) 的第 \(n\) 项模以 \(m\). \(1 \leq n \leq 2^{31}-1 ...
- UVa 10870 Recurrences (矩阵快速幂)
题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340).a1 , a2 ..... ad.f(1), f(2) .. ...
- UVA - 10870 Recurrences 【矩阵快速幂】
题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...
随机推荐
- unable to apply changes:plugins "App links assistant",firebase services won'
新安装的android studio工具报错,本来以为只要在plugins中安装android support插件的,现在点击该插件还是不能apply,提示: unable to apply chan ...
- 面向服务的体系架构 SOA(三) --- Zookeeper API、zkClient API的使用
zookeeper简单介绍及API使用 1.1 zookeeper简介 zookeeper是一个针对大型分布式系统的可靠的协调系统,提供的功能包括配置维护.名字服务.分布式同步.组服务等.zookee ...
- 二分查找(Java实现)
二分查找:递归实现 public class BinarySearch { /** * @param arr 代查找的数组,需要有序 * @param left 查找区间的左界限 * @param r ...
- SpringMvc的传递参数方式 -- url / requestMapping
在使用spring的项目中,前台传递参数到后台是经常遇到的事, 我们必须熟练掌握一些常用的参数传递方式和注解的使用,废话少说,直接上正文. 1. @requestMapping: 类级别和方法级别的注 ...
- Angular开发实践(五):深入解析变化监测
什么是变化监测 在使用 Angular 进行开发中,我们常用到 Angular 中的绑定--模型到视图的输入绑定.视图到模型的输出绑定以及视图与模型的双向绑定.而这些绑定的值之所以能在视图与模型之间保 ...
- nxlog4go 的配置驱动
刚开始接触log4go项目时,没有注意到配置的重要性. 阅读了log4j.log4net.log4cpp.log4cplus的部分代码,发现它们都是以xml配置来驱动日志系统运行的. 多个源文件共享一 ...
- redis配置文件详解及实现主从同步切换
原理:redis复制是怎么进行工作 如果设置了一个slave,不管是在第一次链接还是重新链接master的时候,slave会发送一个同步命令 然后master开始后台保存,收集所有对修改数据的命令.当 ...
- 【js Date】时间字符串、时间戳转换成今天,明天,本月等文字日期
作为前端开发攻城师,难免对时间进行各种计算和格式转换,一个js的Date对象统统可以搞定.下例是将一个具体的时间转换成今天.明天.几天之内.本月等文字描述的日期的工具函数,也可以基于它扩展,多应用于网 ...
- Android实用代码七段(三)
正文 一.获取已经安装APK的路径 PackageManager pm = getPackageManager(); for (ApplicationInfo app : pm.getInstall ...
- Alpha第十天
Alpha第十天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...