题目描述

某 乡有n个村庄(1<n<15),有一个售货员,他要到各个村庄去售货,各村庄之间的路程s(0<s<1000)是已知的,且A村 到B村与B村到A村的路大多不同。为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,假设商店所在的村庄为1,他不知道选择什么样的路线 才能使所走的路程最短。请你帮他选择一条最短的路。

输入

村庄数n和各村之间的路程(均是整数)。

输出

最短的路程。

样例输入

3 0 2 1 1 0 2 2 1 0

样例输出

3
 
题解:
F[i][j],j是状压后的数,是1表示经过,0表示不经过,表示从起点到i经过k1,k2,k3(k&j==1)的村庄的最小路程.
然后就是DP方程
F[j][k|(1<<j-1)]=max(F[i][k]+dis[i][j]) 其中(1<<i-1)&j==1  (1<<j-1)&j==0
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int gi(){
int str=;char ch=getchar();
while(ch>'' || ch<'')ch=getchar();
while(ch>='' && ch<='')str=str*+ch-,ch=getchar();
return str;
}
const int N=;
int n;int dis[N][N];int F[N][<<N];
int main()
{
int x;
n=gi();int pp=(<<n)-,tmp;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=gi();
memset(F,/,sizeof(F));
F[][]=;
for(int k=;k<=pp;k++)
{
for(int i=;i<=n;i++)
{
if(!((<<i-)&k))continue;
for(int j=;j<=n;j++)
{
if(j==i || (<<j-)&k || !dis[i][j])continue;
tmp=F[i][k]+dis[i][j];
if(tmp<F[j][k|(<<j-)])F[j][k|(<<j-)]=tmp;
}
}
}
int ans=;
for(int i=;i<=n;i++)
{
if(dis[i][]==)continue;
if(F[i][pp]+dis[i][]<ans)ans=F[i][pp]+dis[i][];
}
printf("%d",ans);
return ;
}
 

[LSGDOJ 1505]售货员的难题 状压DP的更多相关文章

  1. codevs2596 售货员的难题(状压dp)

    2596 售货员的难题  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 钻石 Diamond     题目描述 Description 某乡有n个村庄(1<n<=15 ...

  2. 洛谷P1171 售货员的难题【状压DP】

    题目描述 某乡有n个村庄(1 输入格式: 村庄数n和各村之间的路程(均是整数). 输出格式: 最短的路程. 输入样例: 3 0 2 1 1 0 2 2 1 0 输出样例 3 说明 输入解释 3 {村庄 ...

  3. 2018.07.18 洛谷P1171 售货员的难题(状压dp)

    传送门 感觉是一道经典的状压dp,随便写了一发卡了卡常数开了个O(2)" role="presentation" style="position: relati ...

  4. 状压dp(状态压缩&&dp结合)学习笔记(持续更新)

    嗯,作为一只蒟蒻,今天再次学习了状压dp(学习借鉴的博客) 但是,依旧懵逼·································· 这篇学习笔记是我个人对于状压dp的理解,如果有什么不对的 ...

  5. 状压dp大总结1 [洛谷]

    前言 状态压缩是一种\(dp\)里的暴力,但是非常优秀,状态的转移,方程的转移和定义都是状压\(dp\)的难点,本人在次总结状压dp的几个题型和例题,便于自己以后理解分析状态和定义方式 状态压缩动态规 ...

  6. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  7. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  8. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  9. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

随机推荐

  1. 那些在django开发中遇到的坑

    1. 关于csrf错误 CSRF(Cross-site request forgery)跨站请求伪造,也被称为“one click attack”或者session riding,通常缩写为CSRF或 ...

  2. Ubuntu登陆密码忘记

    在VMware中安装了Ubuntu 10.04,经过了一段时间,再次登录的时候居然进不去了, 一开始不知道怎样在虚拟机中进入到Grub启动界面,网上搜索了一番,按照以下步骤重新为用户设定了新密码. 重 ...

  3. 201621123043 《Java程序设计》第8周学习总结

    1. 本周学习总结 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 contains的源代码如下 public boolean contain ...

  4. 去掉xcode编译warning:ld: warning: directory not found for option '-L

    选择工程, 编译的 (targets) 选择 Build Settings 菜单 查找 Library Search Paths 和 Framework Search Paths, 删掉编译报warn ...

  5. Android网络传输中必用的两个加密算法:MD5 和 RSA 及Base64加密总结

    (1)commons-codec包简介 包含一些通用的编码解码算法.包括一些语音编码器,Hex,Base64.MD5 一.md5.base64.commons-codec包 commons-codec ...

  6. 【iOS】跳转到设置页面

    iOS8.0以后有效 定位服务 定位服务有很多APP都有,如果用户关闭了定位,那么,我们在APP里面可以提示用户打开定位服务.点击到设置界面设置,直接跳到定位服务设置界面.代码如下: 1 2 3 4 ...

  7. idea导入本地maven项目

    首先把项目关闭File->Close Project 否则会将项目导入到当前项目中 回到主界面,点击Import Project 一定要选择项目的pom文件 默认设置,继续往下走 默认配置,下一 ...

  8. Unity使用脚本进行批量动态加载贴图

    先描述一下我正在做的这个项目,是跑酷类音游. 那么跑酷类音游在绘制跑道上的时候,就要考虑不同的砖块显示问题.假设我有了一个节奏列表,那么我们怎么将不同的贴图贴到不同的砖块上去呢? 我花了好几个小时才搞 ...

  9. Java排序算法之快速排序

    Java排序算法之快速排序 快速排序(Quicksort)是对冒泡排序的一种改进. 快速排序由C. A. R. Hoare在1962年提出.它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分 ...

  10. 详解k8s一个完整的监控方案(Heapster+Grafana+InfluxDB) - kubernetes

    1.浅析整个监控流程 heapster以k8s内置的cAdvisor作为数据源收集集群信息,并汇总出有价值的性能数据(Metrics):cpu.内存.网络流量等,然后将这些数据输出到外部存储,如Inf ...