[usaco6.1.1Postal Vans]
来自FallDream的博客,未经允许,请勿转载,谢谢。
给你一个4*n的棋盘,问从(1,1)出发恰好经过所有格子一次的走法数量.(n<=1000)
插头dp,用f[i][j][k]表示转移到第i行第j列,插头的状态是k的方案数,套上高精度。
假设要转移到格子(i,j) 前一个格子的右插头是p,上一个格子的下插头是q,
p和q都没有插头时,现在这个格子显然只能有向右和向下的插头,插头状态变成()
p和q只有一个有插头时,一个插头只能与这个插头对接,另一个插头可右可下,分别转移
pq都有插头的时候,显然只能和这两个插头对接,考虑维护联通性。
如果两个插头是(),那么会形成一个环,只有在最后一个格子才能转移。
如果两个插头是((或者)),这两个联通块被合并,把这两个插头去掉,然后把他们匹配的两个相同的插头改成()即可。
如果这两个插头是)(,那么直接去掉这两个插头即可。
插头的状态可以与处理,总共只有21种,复杂度O(4*n*21*高精度)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<iomanip>
#define MN 2200
#define mod 1000000000
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} struct Hpc
{
int len,s[];
void init(int x){memset(s,,sizeof(int)*(len+));s[]=x;len=(x>);}
void operator += (Hpc y)
{
len=max(len,y.len)+;
for(int i=;i<=len;++i)
{
s[i]+=y.s[i];
if(s[i]>=mod)
{
s[i+]+=s[i]/mod;
s[i]%=mod;
}
}
if(!s[len]) --len;
}
void print()
{
printf("%d",s[len]);
for(int i=len-;i>;--i)
cout<<setw()<<setfill('')<<s[i];
}
}f[][<<],ans;
int n,tot=,s[MN+],c[MN+][],q[],top; int main()
{
n=read();f[][].init();
for(int i=;i<<<(<<)+;++i)
{
s[++tot]=i;top=;
for(int j=;j<=;++j)
{
int x=i>>(j<<);
if((x&)==) {top=-;break;}
if((x&)==) q[++top]=j;
if((x&)==)
{
if(!top) {top=-;break;}
else c[tot][q[top]]=j,c[tot][j]=q[top],--top;
}
}
if(top) --tot;
}
for(int i=;i<=n;++i)
{
for(int j=;j<=tot;++j)
{
if(s[j]&) f[][s[j]].init();
else f[][s[j]]=f[][s[j]>>];
}
for(int j=;j<=;++j)
{
int x=(j-)<<;
memset(f[j],,sizeof(f[j]));
for(int k=;k<=tot;++k)
{ int p=(s[k]>>x)&;
int q=(s[k]>>(x+))&;
if(!p&&!q) f[j][s[k]|(<<x)]+=f[j-][s[k]];
else if(p&&q)
{
if(p==&&q==)
{
if(i==n&&j==&&s[k]==(<<x)) ans+=f[j-][s[k]];
}
else if(p==&&q==)
f[j][s[k]^(<<x)^(<<(c[k][j]<<))]+=f[j-][s[k]];
else if(p==&&q==) f[j][s[k]^(<<x)]+=f[j-][s[k]];
else if(p==&&q==) f[j][s[k]^(<<x)^(<<(c[k][j-]<<))]+=f[j-][s[k]]; }
else
{
f[j][s[k]]+=f[j-][s[k]];
f[j][(s[k]^(p<<x)^(q<<x+))|(p<<x+)|(q<<x)]+=f[j-][s[k]];
}
}
}
}
ans+=ans;ans.print();
return ;
}
[usaco6.1.1Postal Vans]的更多相关文章
- DDD创始人Eric Vans:要实现DDD原始意图,必须CQRS+Event Sourcing架构
http://www.infoq.com/interviews/Technology-Influences-DDD# 要实现DDD(domain drive design 领域驱动设计)原始意图,必 ...
- USACO 6.1 Postal Vans(一道神奇的dp)
Postal Vans ACM South Pacific Region -- 2003 Tiring of their idyllic fields, the cows have moved to ...
- [外文理解] DDD创始人Eric Vans:要实现DDD原始意图,必须CQRS+Event Sourcing架构。
原文:http://www.infoq.com/interviews/Technology-Influences-DDD# 要实现DDD(domain drive design 领域驱动设计)原始意 ...
- USACO6.5-Closed Fences:计算几何
Closed Fences A closed fence in the plane is a set of non-crossing, connected line segments with N c ...
- USACO6.4-Wisconsin Squares:搜索
Wisconsin Squares It's spring in Wisconsin and time to move the yearling calves to the yearling past ...
- USACO6.4-Electric Fences:计算几何
Electric Fences Kolstad & Schrijvers Farmer John has decided to construct electric fences. He ha ...
- USACO6.4-The Primes
The Primes IOI'94 In the square below, each row, each column and the two diagonals can be read as a ...
- usaco6.1-Cow XOR:trie树
Cow XOR Adrian Vladu -- 2005 Farmer John is stuck with another problem while feeding his cows. All o ...
- codevs 3289 花匠
题目:codevs 3289 花匠 链接:http://codevs.cn/problem/3289/ 这道题有点像最长上升序列,但这里不是上升,是最长"波浪"子序列.用动态规划可 ...
随机推荐
- TFTP通信原理
TFTP的通信流程 TFTP共定义了五种类型的包格式,格式的区分由包数据前两个字节的Opcode字段区分,分别是: · l 读文件请求包:Read request,简写为RRQ,对应Opcode字段值 ...
- Service Worker和HTTP缓存
很多人,包括我自己,初看Service Worker多一个Cache Storage的时候,就感觉跟HTTP长缓存没什么区别. 例如大家讲的最多的Service Worker能让网页离线使用,但熟悉H ...
- Android 扩大 View 的点击区域
有时候,按照视觉图做出来效果后,发现点击区域过小,不好点击,用户体验肯定不好.扩大视图,就会导致整个视觉图变得不好看.那么有没有什么办法在不改变视图大小的前提下扩大点击区域呢? 答案是有! 能够解决这 ...
- 泛型的 typeof
static void Main(string[] args) { TestTypeOf<string>(); Console.ReadKey(); } static void TestT ...
- MHA 安装与简单使用
MHA 在过去几年一直用的比较火,特别是在在传统复制的那个年代.至从有了GTID好像我们也可以把MHA给忘记了,但是很多企业现在还是在用的比较多.每个公司的MHA玩法也不太一样,但是本质都是差不多了. ...
- MQTT和paho(一)
参考链接:http://blog.csdn.net/yangzl2008/article/details/8861069 一.mqtt 1.简单介绍 http://mqtt.org/software ...
- Tomcat(1-1)重置Tomcat8.5管理员的用户名和密码
1.访问 http://localhost:8080/,点击 [manager app],提示输入用户名和密码,admin/admin后报错. 2.解决办法:重置Tomcat8.5管理员的用户名和密 ...
- IIFE的形式、原理和常见写法
immediately invoked function expression 立即调用的函数表达式 出现的形式: 最近做牛客网的JS在线编程,遇到几道考闭包的题目,发现闭包的尾巴那儿经常会出现一对小 ...
- linux下git常用命令
1 安装: sudo apt-get install git 2 创建一个版本库: 新建一个文件夹,进入这个目录之后 git init 3 创建一个版本: git add 文件名或目录 #表示将当前文 ...
- Hibernate(十四):HQL查询(三)
背景 基于上两章节<Hibernate(十二):HQL查询(一)>.<Hibernate(十三):HQL查询(二)>,已经学习了一部分关于HQL的用法: HQL带参数查询 HQ ...