题目戳这里

描述

小雪与小可可吵架了,他们决定以后互相再也不理对方了。尤其是,他们希望以后上学的路上不会再相遇。

我们将他们所在城市的道路网视作无限大的正交网格图,每一个整数点 (x,y) 对应了一个路口,相邻两个整数点之间有一条平行于 x 轴或平行于 y 轴的道路,其道路长度为 1。已经知道小雪家住在 (x_1,0) 处的路口附近,小可可的家住在 (x_2,0) 处的路口附近。另外我们还知道,小雪的学校在 (0,y_1) 处的路口附近,小可可的学校在 (0,y_2) 处的路口附近。其中保证 x_1 < x_2 且 y_1 < y_2。

因为上学不能迟到,所以小雪和小可可总是希望可以走最短路径去上学。同时为了避免见面,希望他们所选择的路线可以没有交点。

格式

输入格式

输入的第一行输入四个正整数,依次为 x_1, x_2, y_1, y_2,满足 x_1 < x_2 且 y_1 < y_2。

输出格式

在输出中,输出一个非负整数,表示可行方案的总数 ans 关于常数 10^9+7 取余后的值。

样例1

样例输入1

1 2 1 2

样例输出1

3

样例2

样例输入2

2 3 2 4

样例输出2

60

样例3

样例输入3

4 9 3 13

样例输出3

16886100

限制

对于30%的数据,0 < x_1,x_2,y_1,y_2<=500。
对于70%的数据,0 < x_1,x_2,y_1,y_2<=3000。
对于100%的数据,0 < x_1,x_2,y_1,y_2<=100000。

  本题考虑用容斥的思想。对于任意的最短路径path1和path2,若相交,则存在一个交点x。在x处交换两个路径,得到新的路径path3和path4,满足path3从(x1,0)到(0,y2)而path4从(x2,0)到(0,y1)。综上所述,整个问题的最后结果=“(x1,0)到(0,y1)的方案数”ד(x2,0)到(0,y2)的方案数”-“(x1,0)到(0,y2)的方案数”ד(x2,0)到(0,y1)的方案数”。

  

  怎么求方案数?

  ●平面直角坐标系中,从(0,0)走到(x,y)的最短路方法有多少种(只能沿xy轴正方向走)

  答案C(y+x,x)或者C(y+x,y)一共要走n+m步,从中选几步向上走或右走

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#define ll long long
#define mod 1000000007
using namespace std;
int x1,x2,y1,y2,fac[200005]; void pre(){
fac[1]=1;
for(int i=2;i<=y2+x2+10;i++)
fac[i]=1ll*fac[i-1]*i%mod;
} int mul(int a,int b){
int ans=1;
while(b){
if(b&1)ans=1ll*ans*a%mod;
a=1ll*a*a%mod;b>>=1;
}
return ans;
} int calc(int x,int y){
int ans=1ll*fac[x+y]*mul(fac[x],mod-2)%mod;
ans=1ll*ans*mul(fac[y],mod-2)%mod;
return ans;
} int main(){
scanf("%d%d%d%d",&x1,&x2,&y1,&y2);pre();
int t1=1ll*calc(x1,y1)*calc(x2,y2)%mod;
int t2=1ll*calc(x1,y2)*calc(x2,y1)%mod;
printf("%d",(t1-t2+mod)%mod);
return 0;
}

  

【vijos1943】上学路上的更多相关文章

  1. [AHOI2015 Junior] [Vijos P1943] 上学路上 【容斥+组合数】

    题目链接:Vijos - P1943 题目分析 这是 AHOI 普及组的题目,然而我并不会做= =弱到不行= = 首先,从 (x, 0) 到 (0, y) 的最短路,一定是只能向左走和向上走,那么用组 ...

  2. 2月4日 考试——迟到的 ACX

    迟到的 ACX 时限:1s 内存限制:128MB题目描述: 今天长沙下雪了,小 ACX 在上学路上欣赏雪景,导致上学迟到,愤怒的佘总给 ACX 巨佬出了一个题目想考考他,现在他找到你,希望你能帮帮他. ...

  3. 浅谈P/NP问题

    克雷数学研究所(Clay Mathematics Institute,CMI)是在1998年由商人兰顿·克雷(Landon T. Clay)和哈佛大学数学家亚瑟·杰夫(Arthur Jaffe)创立, ...

  4. CSP-J&S2019第二轮游记认证

    Day 0 我毕竟不是竞赛省,在黑龙江这个弱省任何初中都没有竞赛生的----在初中,文化课第一----永远如此. 因而,我并不能翘掉周五的文化课来复习或是提前前往省城参加下午2:00~6:00的试机. ...

  5. 《深入理解Java虚拟机》第 3 版里面到底多了哪些知识点?本文竟然得到了本书作者的认可!

    这是why的第 47 篇原创文章 荒腔走板 大家好,我是 why.老规矩,先是简短的荒腔走板聊聊生活. 上面的图是前几天拍的,那天晚上下班后,刚刚走进小区就看到了这一轮弯月和旁边那一颗特别特别亮的星星 ...

随机推荐

  1. mycat入门_介绍与安装

    利用闲暇时间接触了下mycat. 一.介绍 1.概述: 国内最活跃的.性能最好的开源数据库中间件,可以理解为数据库和应用层之间的一个代理组件. 2.作用: 读写分离.分表分库.主从切换. 3.原理: ...

  2. 总体来说,require_once 肯定要比 require 性能好

    首先,总体来说,require_once 肯定要比 require 性能好. 因为 require 某个文件等同于 "编译 + 执行" 这个文件:require_once 避免了对 ...

  3. php的开发的apache的配置及伪静态的应用

    1.Apache之所以能够解析php代码是游览器首先发送数据到模版页面,然后模版页提交数据到php页面,然后php代码经过Apache解析过后生成结果的,所以是 在Apache的配置文件中是可以看到开 ...

  4. Python内置函数(1)——abs

    英文文档: abs(x) Return the absolute value of a number. The argument may be an integer or a floating poi ...

  5. 为什么java中用枚举实现单例模式会更好

    代码简洁 这是迄今为止最大的优点,如果你曾经在Java5之前写过单例模式代码,那么你会知道即使是使用双检锁你有时候也会返回不止一个实例对象.虽然这种问题通过改善java内存模型和使用volatile变 ...

  6. pygame事件之——控制物体(飞机)的移动

    近来想用pygame做做游戏,在 xishui 大神的目光博客中学了学这东西,就上一段自己写的飞机大战的代码,主要是对键盘控制飞机的移动做了相关的优化 # -*- coding: utf-8 -*- ...

  7. Linux搭建Apache+Tomcat实现负载均衡

    一.首先需要安装java,详见http://www.cnblogs.com/fun0623/p/4350004.html 二.编译安装Apache,详见http://www.cnblogs.com/f ...

  8. Python入门之Python在Win10环境下的配置(图文教程)

    请在Python官网下载Python2.7和Python3.6安装包,虽然最新的是3.6版本,但是建议两个包都安装,方便后期在IDE工具切换. Python官网:https://www.python. ...

  9. Modelsim的使用——复杂的仿真

    相对于简单的仿真,复杂的仿真是指由多个文件.甚至调用了IP核.使用tcl脚本进行的仿真.其实仿真步骤跟图形化的差不多,只不过每一步用脚本写好,然后再在软件里面run一下,主要过程就是: 1.准备好各种 ...

  10. [洛谷P1198/BZOJ1012][JSOI2008] 最大数 - 树状数组/线段树?

    其实已经学了树状数组和线段树,然而懒得做题,所以至今没写多少博客 Description 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数 ...