题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3309

题解:

莫比乌斯反演,线筛

化一化式子:

f(x)表示x的质因子分解中的最大幂指数

$\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))$

$\quad\quad=\sum_{g=1}^{n}f(g)\sum_{d=1}^{\lfloor \frac{n}{g} \rfloor} \mu(d)\lfloor \frac{n}{gd} \rfloor\lfloor \frac{m}{gd} \rfloor$

$\quad\quad=\sum_{D=gd=1}^{n}(\lfloor \frac{n}{D} \rfloor\lfloor \frac{m}{D} \rfloor)\sum_{g|D} f(g)u(\frac{D}{g})$

令 $w[D]=\sum_{g|D} f(g)u(\frac{D}{g})$

然后如果能够预处理出w[D],那么这个题的每个询问就可以在$O(\sqrt N)$的复杂度内解决。

虽然w[D]不是积性函数,但仍可以在线筛时求出,详见BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 10000007
using namespace std;
int g[MAXN];
void Sieve(){
static bool np[MAXN];
static int prime[MAXN],idx[MAXN],hav[MAXN],pnt;
for(int i=2,tmp,d;i<=10000000;i++){
if(!np[i]) prime[++pnt]=i,hav[i]=1,idx[i]=1,g[i]=1;
for(int j=1;j<=pnt&&i<=10000000/prime[j];j++){
np[i*prime[j]]=1; hav[i*prime[j]]=hav[i]+(i%prime[j]!=0); d=1; tmp=i; while(tmp%prime[j]==0) d++,tmp/=prime[j];
if(idx[tmp]==d||tmp==1) idx[i*prime[j]]=d;
if(tmp==1) g[i*prime[j]]=1;
else if(idx[i*prime[j]]) g[i*prime[j]]=-1*(hav[i*prime[j]]&1?-1:1); if(i%prime[j]==0) break;
}
}
for(int i=1;i<=10000000;i++) g[i]+=g[i-1];
}
int main(){
Sieve();
int Case,n,m,mini; long long ans;
scanf("%d",&Case);
while(Case--){
scanf("%d%d",&n,&m);
ans=0; mini=min(n,m);
for(int D=1,last;D<=mini;D=last+1){
last=min(n/(n/D),m/(m/D));
ans+=1ll*(g[last]-g[D-1])*(n/D)*(m/D);
}
printf("%lld\n",ans);
}
return 0;
}

  

●BZOJ 3309 DZY Loves Math的更多相关文章

  1. BZOJ 3309: DZY Loves Math

    3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status ...

  2. bzoj 3309 DZY Loves Math 莫比乌斯反演

    DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1303  Solved: 819[Submit][Status][Dis ...

  3. bzoj 3309 DZY Loves Math——反演+线性筛

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 像这种数据范围,一般是线性预处理,每个询问 sqrt (数论分块)做. 先反演一番.然 ...

  4. bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...

  5. BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]

    题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...

  6. BZOJ 3309 DZY Loves Math ——莫比乌斯反演

    枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...

  7. BZOJ 3309: DZY Loves Math 莫比乌斯反演+打表

    有一个神奇的技巧——打表 code: #include <bits/stdc++.h> #define N 10000007 #define ll long long #define se ...

  8. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  9. BZOJ 3561 DZY Loves Math VI

    BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...

随机推荐

  1. 【评分】集美大学软件工程1413班工程项目管理个人作业2——APP案例分析

    [评分]个人作业2--APP案例分析 作业要求 作业地址及完成情况 博文要求 通过分析你选中的产品,结合阅读<构建之法>,写一篇随笔,包含下述三个环节的所有要求. 第一部分 调研, 评测 ...

  2. C语言——第二次作业

    **学习内容总结** 本周是国庆假期,学习了mooc相关课程.阅读了<提问的智慧>一文. 文章总结 1.在提问之前,要利用身边的资源(例如相关资料.FAQ.浏览器搜索)试着自己寻找答案,或 ...

  3. openlayers调用瓦片地图分析

    网上有诸多资料介绍openlayers如何调用百度地图或者是天地图等常见互联网地图,本文作者使用的是不是常见的互联网瓦片,现将调用过程进行整理与大家分享. 首先,openlayers就不赘述了(官网: ...

  4. 【非官方】Surging 微服务框架使用入门

    前言 本文非 Surging 官方教程,只是自己学习的总结.如有哪里不对,还望指正. 我对 surging 的看法 我目前所在的公司采用架构就是类似与Surging的RPC框架,在.NET 4.0框架 ...

  5. datable转xml

    /// <summary> /// datatable转换xml /// </summary> /// <param name="xmlDS"> ...

  6. clang++ 链接问题 和 VS Code

    clang++ 链接问题 和 VS Code 如果你在windows上使用clang 并且同时安装有vs和mingw, clang链接是会自动使用msvs, 链接时会有LINK error LINK ...

  7. 新概念英语(1-143)A walk through the woods

    Lesson 143 A walk through the woods 林中散步 Listen to the tape then answer this question. What was so f ...

  8. IDE-Ecplise-代码注释 模版 编码规范 配色

    说明: 代码注释主要用于方便代码后期维护,编码规范,增加代码阅读性和维护性.因网上看到的很多博客中片段局多,故整理后重写一篇,方便交流学习. 先看下加过注释模版后的效果. 如上图所示,创建类,方法和继 ...

  9. iOS HTML图片本地预览

    引言 相信用过苹果手机的童鞋,会发现很多新闻类的应用,都可以实现HTML图片本地预览,那么这是如何实现的呢?本文将深入阐述其中的原理. 关于此功能,我还实现了一个DEMO,大家可以点击此访问更详细内容 ...

  10. 哪些异常是RuntimeException?Sql异常属于RuntimeException吗?Spring下SQL异常事务回滚

    一,为什么框架中根本没有对Exception的一般子类进行回滚配置,异常发生时,事务都进行了回滚 ,说好的只会对RuntimeException(Unchecked 非受检异常)回滚呢? 此时,我们就 ...