使用TensorFlow v2库实现线性回归

此示例使用简单方法来更好地理解训练过程背后的所有机制

from __future__ import absolute_import, division, print_function
import tensorflow as tf
import numpy as np
rng = np.random
# 参数
learning_rate = 0.01
training_steps = 1000
display_step = 50
# 训练数据
X = np.array([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
7.042,10.791,5.313,7.997,5.654,9.27,3.1])
Y = np.array([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = X.shape[0]
# 随机初始化权重,偏置
W = tf.Variable(rng.randn(),name="weight")
b = tf.Variable(rng.randn(),name="bias") # 线性回归(Wx b)
def linear_regression(x):
return W * x b # 均方差
def mean_square(y_pred,y_true):
return tf.reduce_sum(tf.pow(y_pred-y_true,2)) / (2 * n_samples) # 随机梯度下降优化器
optimizer = tf.optimizers.SGD(learning_rate)
# 优化过程
def run_optimization():
# 将计算封装在GradientTape中以实现自动微分
with tf.GradientTape() as g:
pred = linear_regression(X)
loss = mean_square(pred,Y) # 计算梯度
gradients = g.gradient(loss,[W,b]) # 按gradients更新 W 和 b
optimizer.apply_gradients(zip(gradients,[W,b]))
# 针对给定训练步骤数开始训练
for step in range(1,training_steps 1):
# 运行优化以更新W和b值
run_optimization() if step % display_step == 0:
pred = linear_regression(X)
loss = mean_square(pred, Y)
print("step: %i, loss: %f, W: %f, b: %f" % (step, loss, W.numpy(), b.numpy()))

output:

step: 50, loss: 0.210631, W: 0.458940, b: -0.670898
step: 100, loss: 0.195340, W: 0.446725, b: -0.584301
step: 150, loss: 0.181797, W: 0.435230, b: -0.502807
step: 200, loss: 0.169803, W: 0.424413, b: -0.426115
step: 250, loss: 0.159181, W: 0.414232, b: -0.353942
step: 300, loss: 0.149774, W: 0.404652, b: -0.286021
step: 350, loss: 0.141443, W: 0.395636, b: -0.222102
step: 400, loss: 0.134064, W: 0.387151, b: -0.161949
step: 450, loss: 0.127530, W: 0.379167, b: -0.105341
step: 500, loss: 0.121742, W: 0.371652, b: -0.052068
step: 550, loss: 0.116617, W: 0.364581, b: -0.001933
step: 600, loss: 0.112078, W: 0.357926, b: 0.045247
step: 650, loss: 0.108058, W: 0.351663, b: 0.089647
step: 700, loss: 0.104498, W: 0.345769, b: 0.131431
step: 750, loss: 0.101345, W: 0.340223, b: 0.170753
step: 800, loss: 0.098552, W: 0.335003, b: 0.207759
step: 850, loss: 0.096079, W: 0.330091, b: 0.242583
step: 900, loss: 0.093889, W: 0.325468, b: 0.275356
step: 950, loss: 0.091949, W: 0.321118, b: 0.306198
step: 1000, loss: 0.090231, W: 0.317024, b: 0.335223
import matplotlib.pyplot as plt

# 绘制图
plt.plot(X, Y, 'ro', label='Original data')
plt.plot(X, np.array(W * X b), label='Fitted line')
plt.legend()
plt.show()

output:

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

使用TensorFlow v2库实现线性回归的更多相关文章

  1. 怎样用Python的Scikit-Learn库实现线性回归?

    来源商业新知号网,原标题:用Python的Scikit-Learn库实现线性回归 回归和分类是两种 监督 机器 学习算法, 前者预测连续值输出,而后者预测离散输出. 例如,用美元预测房屋的价格是回归问 ...

  2. 02-05 scikit-learn库之线性回归

    目录 scikit-learn库之线性回归 一.LinearRegression 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 属性 1.5 方法 1.5.1 报告决定系数 二.ARDRe ...

  3. 使用TensorFlow v2.0构建多层感知器

    使用TensorFlow v2.0构建一个两层隐藏层完全连接的神经网络(多层感知器). 这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制. 神经网络概述 MNIST 数据集概述 此 ...

  4. 使用TensorFlow v2.0构建卷积神经网络

    使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...

  5. TensorFlow v2.0实现Word2Vec算法

    使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. " ...

  6. TensorFlow v2.0实现逻辑斯谛回归

    使用TensorFlow v2.0实现逻辑斯谛回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 MNIST数据集概览 此示例使用MNIST手写数字.该数据集包含60,000个用于训练的样本和 ...

  7. TensorFlow v2.0的基本张量操作

    使用TensorFlow v2.0的基本张量操作 from __future__ import print_function import tensorflow as tf # 定义张量常量 a = ...

  8. 使用TensorFlow v2张量的一个简单的“hello world”示例

    使用TensorFlow v2张量的一个简单的"hello world"示例 import tensorflow as tf # 创建一个张量 hello = tf.constan ...

  9. (第一章第六部分)TensorFlow框架之实现线性回归小案例

    系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html (二)TensorFlow框架之图与Tensor ...

随机推荐

  1. 热更新,App双开,App隐藏,App试用 -- Replugin的实际应用(原创)

    热更新,App双开,App隐藏,App试用 -- Replugin的实际应用(原创) RePlugin是Qihoo 360公司的开源框架,原本目的是用于热更新.但是,这个框架提供的功能远远超出了热更新 ...

  2. java基础进阶篇(四)_HashMap------【java源码栈】

    目录 一.前言 二.特点和常见问题 二.接口定义 三.初始化构造函数 四.HashMap内部结构 五.HashMap的存储分析 六.HashMap的读取分析 七.常用方法 八.HashMap 的jav ...

  3. 前端每日实战:48# 视频演示如何用纯 CSS 创作一盘传统蚊香

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/BVpvMz 可交互视频教程 此视频 ...

  4. 前端javascript知识(一)

    介绍一下 JS 的基本数据类型. Undefined.Null.Boolean.Number.String 介绍一下 JS 有哪些内置对象. Object 是 JavaScript 中所有对象的父对象 ...

  5. LeetCode37 使用回溯算法实现解数独,详解剪枝优化

    本文始发于个人公众号:TechFlow,原创不易,求个关注 数独是一个老少咸宜的益智游戏,一直有很多拥趸.但是有没有想过,数独游戏是怎么创造出来的呢?当然我们可以每一关都人工设置,但是显然这工作量非常 ...

  6. 基于springcloud搭建项目-公共篇(二)

    上一篇已经写过如何搭建注册中心eureka,这一篇主要是搭建一些公共的api接口服务,并把实体类单独拿出来放到一个服务上引用,比较简单的 1.首先.创建一个实体类服务,这样就不用在每个服务里创建实体了 ...

  7. chrome 和 chromeDriver

    在写selenium的时候,发现很简单的case也报错 package com.lv.test; import org.junit.Test; import org.openqa.selenium.W ...

  8. AspNetCore源码解析_1_CORS中间件

    概述 什么是跨域 在前后端分离开发方式中,跨域是我们经常会遇到的问题.所谓的跨域,就是处于安全考虑,A域名向B域名发出Ajax请求,浏览器会拒绝,抛出类似下图的错误. JSONP JSONP不是标准跨 ...

  9. 龙叔拿了20几个offer,原因竟有些泪目...

    我是龙叔,一个分享互联网技术和心路历程的大叔. 本文已经收录至我的GitHub,欢迎大家踊跃star 和 issues. https://github.com/midou-tech/articles ...

  10. C++ 判断两个圆是否有交集

    #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include <math.h> #include <easyx.h ...