Spring Cloud Ribbon 客户端负载均衡
Ribbon客户端组件提供一系列完善的配置选项,比如连接超时、重试、重试算法等,内置可插拔、可定制的负载均衡组件。下面是用到的一些负载均衡策略:
- 简单轮询负载均衡
- 加权轮询负载均衡
- 区域感知轮询负载均衡
- 随机负载均衡
先写一个类模拟一个IP列表:
public class IpMap
{
// 待路由的Ip列表,Key代表Ip,Value代表该Ip的权重
public static HashMap<String, Integer> serverWeightMap =
new HashMap<String, Integer>();
static
{
serverWeightMap.put("192.168.1.100", 1);
serverWeightMap.put("192.168.1.101", 1);
// 权重为4
serverWeightMap.put("192.168.1.102", 4);
serverWeightMap.put("192.168.1.103", 1);
serverWeightMap.put("192.168.1.104", 1);
// 权重为3
serverWeightMap.put("192.168.1.105", 3);
serverWeightMap.put("192.168.1.106", 1);
// 权重为2
serverWeightMap.put("192.168.1.107", 2);
serverWeightMap.put("192.168.1.108", 1);
serverWeightMap.put("192.168.1.109", 1);
serverWeightMap.put("192.168.1.110", 1);
}
}
区域感知负载均衡
在选择服务器时,该负载均衡器会采取如下步骤:
区域感知负载均衡器内置电路跳闸逻辑,可被配置基于区域同源关系(Zone Affinity,也就是更倾向于选择发出调用的服务所在的托管区域内,这样可用降低延迟,节省成本)选择目标服务实例。它监控每个区域中运行的实例的运维行为,而且能够实时快速丢弃一整个区域。在面对整个区域的故障时,这帮我们提升了弹性。
1、负载均衡器会检查、计算所有可用区域的状态。如果某个区域中平均每个服务器的活跃请求已经达到配置的阈值,该区域将从活跃服务器列表中排除。如果多于一个区域已经到达阈值,平均每服务器拥有最多活跃请求的区域将被排除。
2、最差的区域被排除后,从剩下的区域中,将按照服务器实例数的概率抽样法选择一个区域。
3、从选定区域中,将会根据给定负载均衡策略规则返回一个服务器。
简单轮询算法
将请求按顺序轮流地分配到后端服务器上,它均衡地对待后端的每一台服务器,而不关心服务器实际的连接数和当前的系统负载。代码实现大致如下:
public class RoundRobin
{
private static Integer pos = 0;
public static String getServer()
{
// 重建一个Map,避免服务器的上下线导致的并发问题
Map<String, Integer> serverMap =
new HashMap<String, Integer>();
serverMap.putAll(IpMap.serverWeightMap);
// 取得Ip地址List
Set<String> keySet = serverMap.keySet();
ArrayList<String> keyList = new ArrayList<String>();
keyList.addAll(keySet);
String server = null;
synchronized (pos)
{
if (pos > keySet.size())
pos = 0;
server = keyList.get(pos);
pos ++;
}
return server;
}
}
- 优点:试图做到请求转移的绝对均衡。
- 缺点:为了做到请求转移的绝对均衡,必须付出相当大的代价,因为为了保证pos变量修改的互斥性,需要引入重量级的悲观锁synchronized,这将会导致该段轮询代码的并发吞吐量发生明显的下降。
加权轮询算法
不同的后端服务器可能机器的配置和当前系统的负载并不相同,因此它们的抗压能力也不相同。给配置高、负载低的机器配置更高的权重,让其处理更多的请;而配置低、负载高的机器,给其分配较低的权重,降低其系统负载,加权轮询能很好地处理这一问题,并将请求顺序且按照权重分配到后端。代码大致如下:
public class WeightRoundRobin
{
private static Integer pos;
public static String getServer()
{
// 重建一个Map,避免服务器的上下线导致的并发问题
Map<String, Integer> serverMap =
new HashMap<String, Integer>();
serverMap.putAll(IpMap.serverWeightMap);
// 取得Ip地址List
Set<String> keySet = serverMap.keySet();
Iterator<String> iterator = keySet.iterator();
List<String> serverList = new ArrayList<String>();
while (iterator.hasNext())
{
String server = iterator.next();
int weight = serverMap.get(server);
for (int i = 0; i < weight; i++)
serverList.add(server);
}
String server = null;
synchronized (pos)
{
if (pos > keySet.size())
pos = 0;
server = serverList.get(pos);
pos ++;
}
return server;
}
}
随机负载均衡
通过系统的随机算法,根据后端服务器的列表大小值来随机选取其中的一台服务器进行访问。由概率统计理论可以得知,随着客户端调用服务端的次数增多,其实际效果越来越接近于平均分配调用量到后端的每一台服务器,也就是轮询的结果。大致代码如下:
public class Random
{
public static String getServer()
{
// 重建一个Map,避免服务器的上下线导致的并发问题
Map<String, Integer> serverMap =
new HashMap<String, Integer>();
serverMap.putAll(IpMap.serverWeightMap);
// 取得Ip地址List
Set<String> keySet = serverMap.keySet();
ArrayList<String> keyList = new ArrayList<String>();
keyList.addAll(keySet);
java.util.Random random = new java.util.Random();
int randomPos = random.nextInt(keyList.size());
return keyList.get(randomPos);
}
}
文末福利
Java 资料大全 链接:https://pan.baidu.com/s/1pUCCPstPnlGDCljtBVUsXQ 密码:b2xc
更多资料: 2020 年 精选阿里 Java、架构、微服务精选资料等,加 v :qwerdd111
转载,请保留原文地址,谢谢 ~
Spring Cloud Ribbon 客户端负载均衡的更多相关文章
- spring cloud --- Ribbon 客户端负载均衡 + RestTemplate + Hystrix 熔断器 [服务保护] ---心得
spring boot 1.5.9.RELEASE spring cloud Dalston.SR1 1.前言 当超大并发量并发访问一个服务接口时,服务器会崩溃 ,不仅导致这个接口无法 ...
- spring cloud --- Ribbon 客户端负载均衡 + RestTemplate ---心得【无熔断器】
spring boot 1.5.9.RELEASE spring cloud Dalston.SR1 1.前言 了解了 eureka 服务注册与发现 的3大角色 ,会使用RestTem ...
- 笔记:Spring Cloud Ribbon 客户端负载均衡
Spring Cloud Ribbon 是一个基于 HTTP 和 TCP 的客户端负载均衡工具,基于 Netflix Ribbon 实现,通过Spring Cloud 的封装,可以让我们轻松的将面向服 ...
- Spring Cloud Ribbon——客户端负载均衡
一.负载均衡负载均衡(Load Balance): 建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽.增加吞吐量.加强网络数据处理能力.提高网络的灵活性和可用性.其意思 ...
- Spring Cloud Ribbon客户端负载均衡(四)
序言 Ribbon 是一个客户端负载均衡器(Nginx 为服务端负载均衡),它赋予了应用一些支配 HTTP 与 TCP 行为的能力,可以得知,这里的客户端负载均衡也是进程内负载均衡的一种.它在 Spr ...
- Spring Cloud Ribbon 客户端负载均衡 4.3
在分布式架构中,服务器端负载均衡通常是由Nginx实现分发请求的,而客户端的同一个实例部署在多个应用上时,也需要实现负载均衡.那么Spring Cloud中是否提供了这种负载均衡的功能呢?答案是肯 ...
- Spring Cloud 2-Ribbon 客户端负载均衡(二)
Spring Cloud Eureka 1.Hello-Service服务端配置 pom.xml application.yml 启动两个service 2.Ribbon客户端配置 pom.xml ...
- spring cloud 之 客户端负载均衡 Ribbon
一.负载均衡 负载均衡(Load Balance): 建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽.增加吞吐量.加强网络数据处理能力.提高网络的灵活性和可用性.其意 ...
- 【Spring Cloud】客户端负载均衡组件——Ribbon(三)
一.负载均衡 负载均衡技术是提高系统可用性.缓解网络压力和处理能力扩容的重要手段之一. 负载均衡可以分为服务器负载均衡和客户端负载均衡,服务器负载均衡由服务器实现,客户端只需正常访问:客户端负载均衡技 ...
随机推荐
- HTTP接口测试
HTTP接口测试 1.1 get接口 请求URL http://api.nnzhp.cn/api/user/stu_info 请求方式 get 请求参数 参数名 必选 类型 说明 stu_name 是 ...
- HMM-前向后向算法与实现
目录 基本要素 HMM三大问题 概率计算问题 前向算法 后向算法 前向-后向算法 基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,.. ...
- 一文带你了解Spring核心接口Ordered的实现及应用
前言 最近在看框架的时候,发现了这个接口,在此进行总结,希望能够给大家帮助,同时提升自己. order接口的大体介绍 Spring框架中有这个一个接口,名字叫Ordered,联想我们在数据库中应用的O ...
- 掌握这10种方法帮你快速在Linux上分析二进制文件
我们每天都使用二进制文件,但对二进制文件知之甚少.二进制是指您每天运行的可执行文件,从命令行工具到成熟的应用程序.Linux提供了丰富的工具集,可轻松进行二进制分析!无论您的工作角色是什么,如果您在L ...
- vue 在main.js里使用vue实例
可以用 Vue.prototype 比如 Vue.prototype.$indicator.close(); 关闭正在加载的动画
- HDU 2004 (水)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2004 题目大意: 给你成绩让你根据成绩打分解题思路: 简单的if...else 应用 需要注意是,if ...
- MySQL安装(linux)
Centos 安装mysql 安装mariadb yum install mariadb mariadb-server mariadb-devel 安装mysql rpm -qa | grep MyS ...
- Python --表达式和运算符
表达式 由一个或者几个数字或者变量和运算符组合成的一行代码 通常会返回一个结果 运算符 由一个以上的值经过变化得到新值的过程就叫做运算 用于运算的符号称为运算符 运算符的分类: 算数运算符 比较或者关 ...
- 《C程序设计语言》 练习3-3
问题描述 编写expand(s1,s2),将字符串s1中类似于a-z类的速记符号在字符串s2中扩展为等价的完整列表abc.....xyz.该函数可以处理大小写字母和数字,并可以处理a-b-c,a-z0 ...
- 我,不是说了PID要平均值吗?
前几日写了一篇PID算法学习笔记,并幻想了一个场景进行算法仿真.经过不断探索后,博主发现,PID算法的精髓不在算法逻辑,而在于PID三个参数的值.本篇随笔将延续上次的仿真实验进行调试,总结PID调参的 ...