吴裕雄--天生自然TensorFlow高层封装:Keras-返回值
# 1. 数据预处理。
import keras
from keras.models import Model
from keras.datasets import mnist
from keras.layers import Input, Dense
from tflearn.layers.core import fully_connected num_classes = 10
img_rows, img_cols = 28, 28 # 通过Keras封装好的API加载MNIST数据。
(trainX, trainY), (testX, testY) = mnist.load_data()
trainX = trainX.reshape(trainX.shape[0], img_rows * img_cols)
testX = testX.reshape(testX.shape[0], img_rows * img_cols) # 将图像像素转化为0到1之间的实数。
trainX = trainX.astype('float32')
testX = testX.astype('float32')
trainX /= 255.0
testX /= 255.0 # 将标准答案转化为需要的格式(one-hot编码)。
trainY = keras.utils.to_categorical(trainY, num_classes)
testY = keras.utils.to_categorical(testY, num_classes)
# 2. 通过返回值的方式定义模型。
inputs = Input(shape=(784,)) x = Dense(500, activation='relu')(inputs)
predictions = Dense(10, activation='softmax')(x) model = Model(inputs=inputs, outputs=predictions)
model.compile(loss=keras.losses.categorical_crossentropy,optimizer=keras.optimizers.SGD(),metrics=['accuracy'])
# 3. 训练模型。
model.fit(trainX, trainY,batch_size=32,epochs=10,validation_data=(testX, testY))


吴裕雄--天生自然TensorFlow高层封装:Keras-返回值的更多相关文章
- 吴裕雄--天生自然TensorFlow高层封装:Keras-TensorFlow API
# 1. 模型定义. import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist_ ...
- 吴裕雄--天生自然TensorFlow高层封装:Keras-多输入输出
# 1. 数据预处理. import keras from keras.models import Model from keras.datasets import mnist from keras. ...
- 吴裕雄--天生自然TensorFlow高层封装:Keras-CNN
# 1. 数据预处理 import keras from keras import backend as K from keras.datasets import mnist from keras.m ...
- 吴裕雄--天生自然TensorFlow高层封装:Estimator-自定义模型
# 1. 自定义模型并训练. import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist i ...
- 吴裕雄--天生自然TensorFlow高层封装:Estimator-DNNClassifier
# 1. 模型定义. import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...
- 吴裕雄--天生自然TensorFlow高层封装:Keras-RNN
# 1. 数据预处理. from keras.layers import LSTM from keras.datasets import imdb from keras.models import S ...
- 吴裕雄--天生自然TensorFlow高层封装:解决ImportError: cannot import name 'tf_utils'
将原来版本的keras卸载了,再安装2.1.5版本的keras就可以了.
- 吴裕雄--天生自然TensorFlow高层封装:解决ValueError: Invalid backend. Missing required entry : placeholder
找到对应的keras配置文件keras.json 将里面的内容修改为以下就可以了
- 吴裕雄--天生自然TensorFlow高层封装:使用TensorFlow-Slim处理MNIST数据集实现LeNet-5模型
# 1. 通过TensorFlow-Slim定义卷机神经网络 import numpy as np import tensorflow as tf import tensorflow.contrib. ...
随机推荐
- sql server 日期时间数据类型
1.日期和时间数据类型 (1)在sqlserver 2008之前,SQL Server 支持datetime 和 smalldatetime 两种日期时间数据类型.这两种数据类型日期和时间是不可分割的 ...
- export环境变量
/etc/profile和/etc/profile.d/区别 [root@zzx conf]# vim /etc/profile.d/tomcat.sh 添加如下内容再运行脚本就可以添加环境变量 ...
- filter滤镜兼容ie的rgba属性
要在一个页面中设置一个半透明的白色div.这个貌似不是难题,只需要给这个div设置如下的属性即可: background: rgba(255,255,255,0.1); 但是要兼容到ie8.这个就有点 ...
- 【分类问题中模型的性能度量(二)】超强整理,超详细解析,一文彻底搞懂ROC、AUC
文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 ...
- 面试题(6)之 leetcode-001
1. 两数之和 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重复利用这 ...
- 模块化CommonJs规范 part1
CommonJS规范 来自<JavaScript 标准参考教程(alpha)>,by 阮一峰 1.概述 Node 应用由模块组成,采用 CommonJS 模块规范. 每个文件就是一个模块, ...
- opencv3。4安装出错
https://www.samontab.com/web/2017/06/installing-opencv-3-2-0-with-contrib-modules-in-ubuntu-16-04-lt ...
- 合并排序_python
#!/usr/bin/python # --coding:utf-8 -- def sort_merge(left,right): i,j=0,0 result=[] while i<len(l ...
- Django——CSRF防御
关于CSRF攻击原理在上一篇博客已经有过说明,这篇主要介绍下Django关于开启CSRF及CSRF工作机理.关于开启防御有两种,一种是全局开启,另一种是局部开启. 全局: 中间件 django.mid ...
- JavaScript之递归
什么是递归? 程序调用自身的编程技巧称为递归( recursion).递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量 . 递归的能力在于用有限的语句来定义对象的 ...