Hadoop基准测试(二)
Hadoop Examples
除了《Hadoop基准测试(一)》提到的测试,Hadoop还自带了一些例子,比如WordCount和TeraSort,这些例子在hadoop-examples-2.6.0-mr1-cdh5.16.1.jar和hadoop-examples.jar中。执行以下命令:
hadoop jar hadoop-examples--mr1-cdh5.16.1.jar
会列出所有的示例程序:
bash--mr1-cdh5.16.1.jar An example program must be given as the first argument. Valid program names are: aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files. aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files. bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi. dbcount: An example job that count the pageview counts from a database. distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi. grep: A map/reduce program that counts the matches of a regex in the input. join: A job that effects a join over sorted, equally partitioned datasets multifilewc: A job that counts words from several files. pentomino: A map/reduce tile laying program to find solutions to pentomino problems. pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method. randomtextwriter: A map/reduce program that writes 10GB of random textual data per node. randomwriter: A map/reduce program that writes 10GB of random data per node. secondarysort: An example defining a secondary sort to the reduce. sort: A map/reduce program that sorts the data written by the random writer. sudoku: A sudoku solver. teragen: Generate data for the terasort terasort: Run the terasort teravalidate: Checking results of terasort wordcount: A map/reduce program that counts the words in the input files. wordmean: A map/reduce program that counts the average length of the words in the input files. wordmedian: A map/reduce program that counts the median length of the words in the input files. wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.
单词统计测试
进入角色hdfs创建的文件夹**,执行命令:vim words.txt,输入内容如下:
hello hadoop hbase mytest hadoop-node1 hadoop-master hadoop-node2 this is my test
执行命令:
../bin/hadoop fs -put words.txt /tmp/
将文件上传到HDFS中,如下:

执行以下命令,使用mapreduce统计指定文件单词个数,并将结果输入到指定文件:
hadoop jar ../jars/hadoop-examples--mr1-cdh5.16.1.jar wordcount /tmp/words.txt /tmp/words_result.txt
返回如下信息:
bash--mr1-cdh5.16.1.jar wordcount /tmp/words.txt /tmp/words_result.txt
// :: INFO client.RMProxy: Connecting to ResourceManager at node1/
// :: INFO input.FileInputFormat: Total input paths to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1552358721447_0060
// :: INFO impl.YarnClientImpl: Submitted application application_1552358721447_0060
// :: INFO mapreduce.Job: The url to track the job: http://node1:8088/proxy/application_1552358721447_0060/
// :: INFO mapreduce.Job: Running job: job_1552358721447_0060
// :: INFO mapreduce.Job: Job job_1552358721447_0060 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1552358721447_0060 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total
Total
Total
Total
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input
Combine input records=
Combine output records=
Reduce input
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC
CPU
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
在hdfs目录下保存了任务的结果文件:

结果记录条目从0计数到47,共计48条:

每一个part对应一个Reduce:

执行命令,查看任务执行后的结果:
bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-*****
返回结果如下:
bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00000 bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00011 is bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00015 this bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00022 hadoop bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00024 hbase bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00040 hadoop-node1 bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00041 hadoop-master hadoop-node2 bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00045 my bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00047 mytest
参考: https://jeoygin.org/2012/02/22/running-hadoop-on-centos-single-node-cluster/
Hadoop基准测试(二)的更多相关文章
- MySQL基准测试(二)--方法
MySQL基准测试(二)--方法 目的: 方法不是越高级越好.而应该善于做减法.至简是一种智慧,首先要做的是收集MySQL的各状态数据.收集到了,不管各个时间段出现的问题,至少你手上有第一时间的状态数 ...
- Hadoop(二):MapReduce程序(Java)
Java版本程序开发过程主要包含三个步骤,一是map.reduce程序开发:第二是将程序编译成JAR包:第三使用Hadoop jar命令进行任务提交. 下面拿一个具体的例子进行说明,一个简单的词频统计 ...
- Hadoop 基准测试与example
#pi值示例 hadoop jar /app/cdh23502/share/hadoop/mapreduce2/hadoop-mapreduce-examples--cdh5. #生成数据 第一个参数 ...
- Hadoop系列(二)hadoop2.2.0伪分布式安装
一.环境配置 安装虚拟机vmware,并在该虚拟机机中安装CentOS 6.4: 修改hostname(修改配置文件/etc/sysconfig/network中的HOSTNAME=hadoop),修 ...
- Hadoop MapReduce 二次排序原理及其应用
关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGrou ...
- Hadoop基准测试(转载)
<hadoop the definitive way>(third version)中的Benchmarking a Hadoop Cluster Test Cases的class在新的版 ...
- hadoop系列二:HDFS文件系统的命令及JAVA客户端API
转载请在页首明显处注明作者与出处 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6 ...
- hadoop(二)搭建伪分布式集群
前言 前面只是大概介绍了一下Hadoop,现在就开始搭建集群了.我们下尝试一下搭建一个最简单的集群.之后为什么要这样搭建会慢慢的分享,先要看一下效果吧! 一.Hadoop的三种运行模式(启动模式) 1 ...
- Hadoop基准测试
其实就是从网络上copy的吧,在这里做一下记录 这个是看一下有哪些测试方式: hadoop jar /opt/cloudera/parcels/CDH-5.3.6-1.cdh5.3.6.p0.11/ ...
随机推荐
- Vue组件介绍及开发
一. 通过axios实现数据请求 1.json json是 JavaScript Object Notation 的首字母缩写,单词的意思是javascript对象表示法,这里说的json指的是类似于 ...
- 安卓开发:在Mac系统中搭建安卓开发环境
第一步:检查下自己的电脑上有没有安装JDK(Java Development Kit)(2019年7月安装的最新版是JDK 1.8.0_181版本),通过在终端中输入"java -versi ...
- 关于报错:Warning: Cannot modify header information - headers already sent by (output started at
8月5日,第一个项目即将完成,测试时,发现登录功能会出现小问题:记住密码的时候会报错 Warning: Cannot modify header information - headers alrea ...
- 关于无线的Idle Timeout和Session Timeout
1.Session Timeout Session Timer的默认值为1800s,也就是30min.Session Timeout:当该计时器超时时,使得客户端强制发生重认证,这个时间是从客户端认证 ...
- 学校实训作业:Java爬虫(WebMagic框架)的简单操作
项目名称:java爬虫 项目技术选型:Java.Maven.Mysql.WebMagic.Jsp.Servlet 项目实施方式:以认知java爬虫框架WebMagic开发为主,用所学java知识完成指 ...
- #P1909 买铅笔 的题解
题目描述 P老师需要去商店买n支铅笔作为小朋友们参加NOIP的礼物.她发现商店一共有 33种包装的铅笔,不同包装内的铅笔数量有可能不同,价格也有可能不同.为了公平起 见,P老师决定只买同一种包装的铅笔 ...
- 输入流输出流IO的理解
之前对IO理解总是有点模糊, 输入输出,其实针对 数据处理主体 A ,这个主体我们通常是指服务器程序本身, 交互目的源B ,一般是本地磁盘,由本地磁盘IO传输, 或者 远程客户端,由网络IO传输. ...
- python脚本调用iftop 统计业务应用流量
因公司服务器上部署应用较多,在有大并发访问.业务逻辑有问题的情况下反复互相调用或者有异常流量访问的时候,需要对业务应用进行故障定位,所以利用python调用iftop命令来获取应用进程流量,结合zab ...
- javascript入门教程02
JavaScript中的运算符 (1)算术运算符 + :相加 var a=123,b=45; document.write(a+b); - :相减 document.write(a-b); *:相乘 ...
- JavaWeb之过滤器
过滤器 什么是过滤器 1示意图: 过滤器的作用: 1.过滤器的作用好比一个保安.是servlet规范中的技术 2.用户在访问应用的资源之前或者之后,可以对请求做出一定的处理 编写过滤器步骤: 1.编写 ...