洛谷 P4822 [BJWC2012]冻结
之前没学分层图,所以先咕了一下hiahiahia。
学完分层图了回来水写题解了。
这道题要用分层图来解。分层图就是在我们决策的时候,再建k层图,一共k+1层,层与层之间是有向边(这个很重要的),权值为我们进行决策后的代价,而每一层互相连的什么都不变。对于这道题,就像这样建图:
for(int i = 1; i <= m; i++){
int x , y , z;
cin >> x >> y >> z;
e[x].push_back(make_pair(y , z));
e[y].push_back(make_pair(x , z));
for(int j = 1; j <= k; j++){
e[x + j * n].push_back(make_pair(y + n * (j - 1) , z / 2));
e[x + j * n].push_back(make_pair(y + n * j , z));
e[y + j * n].push_back(make_pair(x + n * (j - 1) , z / 2));
e[y + j * n].push_back(make_pair(x + n * j , z));
}
}
个人习惯,这里用的vector啊qwq。
如果要认真学习下分层图的话建议使用这篇博客哦我太懒了才不会写呢。
下面给出AC代码
#include <bits/stdc++.h>
using namespace std;
int n , m , k , ans = 0x3ffffff;
int dis[10010] , vis[10010];
vector<pair<int , int> > e[10010];
void work1(){
priority_queue<pair<int , int> > q;
memset(dis , 127 , sizeof(dis));
dis[1 + k * n] = 0;
q.push(make_pair(0 , 1 + k * n));
while(!q.empty()){
int x = q.top().second;
q.pop();
if(vis[x]) continue;
vis[x] = 1;
for(int i = 0; i < e[x].size(); i++){
int nx = e[x][i].first , w = e[x][i].second;
if(dis[nx] > dis[x] + w){
dis[nx] = dis[x] + w;
q.push(make_pair(-dis[nx] , nx));
}
}
}
}
int main(){
cin >> n >> m >> k;
for(int i = 1; i <= m; i++){
int x , y , z;
cin >> x >> y >> z;
e[x].push_back(make_pair(y , z));
e[y].push_back(make_pair(x , z));
for(int j = 1; j <= k; j++){
e[x + j * n].push_back(make_pair(y + n * (j - 1) , z / 2));
e[x + j * n].push_back(make_pair(y + n * j , z));
e[y + j * n].push_back(make_pair(x + n * (j - 1) , z / 2));
e[y + j * n].push_back(make_pair(x + n * j , z));
}
}
work1();
for(int i = 0; i <= k; i++) ans = min(dis[n + i * n] , ans);
cout << ans;
return 0;
}
/*
6 9 1
1 2 2
1 4 6
1 3 8
1 5 10
2 4 4
3 5 2
4 5 4
5 6 2
3 6 4
*/
洛谷 P4822 [BJWC2012]冻结的更多相关文章
- 洛谷 P4822 [BJWC2012]冻结 题解
P4822 [BJWC2012]冻结 题目描述 "我要成为魔法少女!" "那么,以灵魂为代价,你希望得到什么?" "我要将有关魔法和奇迹的一切,封印于 ...
- [洛谷P4822][BJWC2012]冻结
题目大意:有一张$n(n\leqslant50)$个点$m(m\leqslant1000)$条边的无向图,可以使得$k$条边使得边权减半,求最短路 题解:分层图最短路 卡点:无 C++ Code: # ...
- 洛谷P4822 冻结
题目描述 "我要成为魔法少女!" "那么,以灵魂为代价,你希望得到什么?" "我要将有关魔法和奇迹的一切,封印于卡片之中„„" 在这个愿望被 ...
- P4822 [BJWC2012]冻结
思路 和p4568类似的分层图最短路 从上一层向下一层连边权/2的边即可 代码 #include <cstdio> #include <algorithm> #include ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
随机推荐
- Java实现 LeetCode 498 对角线遍历
498. 对角线遍历 给定一个含有 M x N 个元素的矩阵(M 行,N 列),请以对角线遍历的顺序返回这个矩阵中的所有元素,对角线遍历如下图所示. 示例: 输入: [ [ 1, 2, 3 ], [ ...
- Java实现 蓝桥杯VIP 算法训练 快速排序
import java.util.Scanner; public class 快速排序 { public static void main(String[] args){ Scanner sc=new ...
- Java实现 蓝桥杯VIP 算法训练 奇偶判断
问题描述 能被2整除的数称为偶数,不能被2整除的数称为奇数.给一个整数x,判断x是奇数还是偶数. 输入格式 输入包括一个整数x,0<=x<=100000000. 输出格式 如果x是奇数,则 ...
- 使用Pycharm安装插件时发生错误
报错内容:pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.o ...
- java实现最大五个数
** 最大5个数** [12,127,85,66,27,34,15,344,156,344,29,47,....] 这是某设备测量到的工程数据. 因工程要求,需要找出最大的5个值. 一般的想法是对它排 ...
- 从windows到Mac的那些坑
今年入职一家新公司 公司办公统一使用Mac pro,所有国产软件不允许使用,只允许装国外的.开源的软件,,,,(这对一个从来没用过Mac的人来说,可真是头疼了一阵子) 经过几天的摸索,作一个简单的小总 ...
- RocketMQ系列(五)广播与延迟消息
今天要给大家介绍RocketMQ中的两个功能,一个是"广播",这个功能是比较基础的,几乎所有的mq产品都是支持这个功能的:另外一个是"延迟消费",这个应该算是R ...
- 关于GatewayClient 介绍和使用
GatewayClient ## 源码 https://github.com/walkor/GatewayClient 根据GatewayWorker版本,选择合适的GatewayClient版本,请 ...
- TensorFlow从0到1之TensorFlow损失函数(12)
正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数.本节将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数. 声明一个损失函数需要将系数定 ...
- AIO,BIO,NIO,IO复用,同步,异步,阻塞和非阻塞
(1)什么是NIO(Non-blocked IO),AIO,BIO (2) 区别 (3)select 与 epoll,poll区别 1.什么是socket?什么是I/O操作? 什么是socket? 实 ...