N wizards are attending a meeting. Everyone has his own magic wand. N magic wands was put in a line, numbered from 1 to n(Wand_i owned by wizard_i). After the meeting, n wizards will take a wand one by one in the order of 1 to n. A boring wizard decided to reorder the wands. He is wondering how many ways to reorder the wands so that at least k wizards can get his own wand.

For example, n=3. Initially, the wands are w1 w2 w3. After reordering, the wands become w2 w1 w3. So, wizard 1 will take w2, wizard 2 will take w1, wizard 3 will take w3, only wizard 3 get his own wand.

Input

First line contains an integer T (1 ≤ T ≤ 10), represents there are T test cases.

For each test case: Two number n and k.

1<=n <=10000.1<=k<=100. k<=n.

Output

For each test case, output the answer mod 1000000007(10^9 + 7).

Sample Input

2
1 1
3 1

Sample Output

1
4
题解:n个人排位,求至少k个人能做到自己位置的方法树。那么我们就要求出组合数Cnm,错排递推数组dp[i],
然后还有数据的问题,要反向考虑,从k到n转换为从0到k(左闭右开),那么还要计算出排列递推数组fac[i](即阶乘)位总方案数,一减即得答案。
#include<iostream>
using namespace std;
typedef long long ll;
const int maxn=;
const int mod=1e9+;
ll C[maxn][],dp[maxn],fac[maxn];
void Init()
{
fac[]=,fac[]=;
for(int i=;i<=;i++)//计算总方案数,即阶乘数
fac[i]=i*fac[i-]%mod;
dp[]=,dp[]=,dp[]=;
for(int i=;i<=;i++)//错排公式
{
dp[i]=((i-)*(dp[i-]+dp[i-])%mod)%mod;;
}
C[][]=;
C[][]=;
for(int i=;i<=;i++)//组合公式
{
C[i][]=;
for(int j=;j<=i&&j<=;j++)
{
C[i][j]=(C[i-][j-]+C[i-][j])%mod;
}
}
}
int main()
{
std::ios::sync_with_stdio();
Init();
int t,n,k;
cin>>t;
while(t--)
{
cin>>n>>k;
ll ans=;
for(int i=;i<k;i++)//由于正向考虑会T,并且k<100,那么我们反向考虑情况,用总情况减去即可
{ //反向情况即为:从n个数中选取i个,剩下n-i个错排,i范围从0到k
ans=(ans+(C[n][i]*dp[n-i])%mod)%mod;
}
cout<<(fac[n]-ans+mod)%mod<<endl;//注意输出也要取模
}
return ;
}

K - Wand(组合数+错排公式)的更多相关文章

  1. Codeforces 888D: Almost Identity Permutations(错排公式,组合数)

    A permutation \(p\) of size \(n\) is an array such that every integer from \(1\) to \(n\) occurs exa ...

  2. HDU——2068RPG的错排(错排公式)

    RPG的错排 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  3. HDU 2068 RPG错排 [错排公式]

    1.题意:1到N的序列的排列中,元素位置与元素值相对应的情况(值为i的元素在某个排列中正好排在第i个位置)大于等于序列规模一半的情况,有多少个? 2.输入输出:每组数据一个数,N,规定输入以0结尾: ...

  4. HDU 2048:神、上帝以及老天爷(错排公式,递推)

    神.上帝以及老天爷 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  5. hdu 4535(排列组合之错排公式)

    吉哥系列故事——礼尚往来 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  6. HDU——1465不容易系列之一(错排公式)

    不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  7. HDU 1465(错排公式)

    不容易系列之一 题意: 一个人要寄n个信封,结果装错了.信纸的编号为1到n,信封的编号为1到n,信纸的编号不能和信封的编号一样,全都不能一样. 思路:错排公式. D(n)表示n件信封装错的所有的情况. ...

  8. HDU 2068 RPG的错排(错排公式 + 具体解释)

    RPG的错排 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  9. 【BZOJ】4517 [Sdoi2016]排列计数(数学+错排公式)

    题目 传送门:QWQ 分析 $ O(nlogn) $预处理出阶乘和阶乘的逆元,然后求组合数就成了$O(1)$了. 最后再套上错排公式:$ \huge d[i]=(i-1) \times (d[i-1] ...

随机推荐

  1. tensorflow---darknet53

    #! /usr/bin/env python# coding=utf-8#=============================================================== ...

  2. settings配置数据库和日志

    数据库的配置: 一.mysql配置 pip下载pymysql,用于mysql和django的连接. 在init.py上配置pymsqy. import pymysql pymysql.install_ ...

  3. AT2000 Leftmost Ball 解题报告

    题面 给你n种颜色的球,每个球有k个,把这n*k个球排成一排,把每一种颜色的最左边出现的球涂成白色(初始球不包含白色),求有多少种不同的颜色序列,答案对1e9+7取模 解法 设\(f(i,\;j)\) ...

  4. sychronized和lock和区别

    syschronized和lock的区别 synchronized的锁可重入.不可中断.非公平,而Lock锁可重入.可中断.可公平.绑定多个Condition.(两者皆可重入)synchronized ...

  5. ADO多线程数据库查询

    {ADO查询多线程单元} unit ADOThread; interface uses Classes,StdCtrls,ADODB; type TADOThread = class(TThread) ...

  6. linux 替换jdk指定jar包

    我的bug是:jdk1.8的安全策略和腾讯邮箱服务有冲突.我知道的解决方法: 1更换低版本安全策略相关的jar包.(windows:http://www.cnblogs.com/dennyzhangd ...

  7. 吴裕雄--天生自然 PHP开发学习:条件语句

    <?php $t=date("H"); if ($t<"20") { echo "Have a good day!"; } ?& ...

  8. 从编程实现角度学习Faster R-CNN(附极简实现)

    https://www.jianshu.com/p/9da1f0756813 从编程实现角度学习Faster R-CNN(附极简实现) GoDeep 关注 2018.03.11 15:51* 字数 5 ...

  9. 内存管理之栈stack

    1.什么是栈   栈是一种数据结构,C语言中使用栈来保存局部变量.栈是被发明出来管理内存的.2.栈管理内存的特点(小内存.自动化)   先进后出  FILO   first in last out   ...

  10. vue中使用elementUI中表格的v宽度,字体大小

    <el-table :row-style="{height:'20px'}" :cell-style="{padding:'0px'}" style=&q ...