Conquer and Divide经典例子之Strassen算法解决大型矩阵的相乘
在通过汉诺塔问题理解递归的精髓中我讲解了怎么把一个复杂的问题一步步recursively划分了成简单显而易见的小问题。其实这个解决问题的思路就是算法中常用的divide and conquer, 这篇日志通过解决矩阵的乘法,来了解另外一个基本divide and conque思想的strassen算法。
矩阵A乘以B等于X, 则Xij =
注意左乘右乘的区别,AB 与BA是不同的。
如果r = 1, 直接就是两个数的相乘。
如果r = 2, 例如
X =
[ 1, 2;
3, 4];
Y =
[ 2, 3;
4, 5];
R = XY的计算十分简单,但是如果r很大,耗时是O(r^3)。为了简化,可以把X, Y各自划分成2X2的矩阵,每一个元素其实是有n/2行的矩阵
(注:这里仅讲解行数等于列数的情况。)
X =
[A, B;
C, D];
Y =
[E, F;
G, H]
所以XY =[
AE+BG, AF+BH;
CE+DG, CF+DH]
Strassen引入seven magic product 分别是P1, P2, P3 ,P4, P5, P6, P7
P1 = A(F-H)
P2 = (A+B)H
P3 = (C+D)E
P4 = D(G-E)
P5 = (A+D)(E+H)
P6 = (B-D)(G+H)
P7 = (A-C)(E+F)
这样XY =
[P5+P4-P2+P6, P1+P2;
P3+P4, P1+P5-P3-P7]
然后通过递归的策略计算矩阵的相乘,递归的出口是n = 1.
关键点就是这些,附上代码吧。
- //multiply matrix multiplication
- import java.util.Scanner;
- public class Strassen{
- public Strassen(){}
- /** split a parent matrix into child matrics8*/
- public static void split(int[][] P, int[][] C, int iB, int jB){
- for(int i1=0, i2 = iB; i1<C.length; i1++, i2++)
- for(int j1=0, j2=jB; j1<C.length; j1++, j2++)
- C[i1][j1] = P[i2][j2];
- }
- /**join child matric into parent matrix*/
- public static void join(int[][] C, int[][] P, int iB, int jB){
- for(int i1=0, i2 = iB; i1<C.length; i1++, i2++)
- for(int j1=0, j2=jB; j1<C.length; j1++, j2++)
- P[i2][j2]=C[i1][j1];
- }
- /**add two matrics into one*/
- public static int[][] add(int[][] A, int[][] B){
- //A and B has the same dimension
- int n = A.length;
- int[][] C = new int[n][n];
- for (int i=0; i<n; i++)
- for(int j=0; j<n; j++)
- C[i][j] = A[i][j] + B[i][j];
- return C;
- }
- //subtract one matric by another
- public static int[][] sub(int[][] A, int[][] B){
- //A and B has the same dimension
- int n = A.length;
- int[][] C = new int[n][n];
- for (int i=0; i<n; i++)
- for(int j=0; j<n; j++)
- C[i][j] = A[i][j] - B[i][j];
- return C;
- }
- //Multiply matrix
- public static int[][] multiply(int[][] A, int[][] B){
- int n = A.length;
- int[][] R = new int[n][n];
- /**exit*/
- if(n==1)
- R[0][0] = A[0][0]+B[0][0];
- else{
- //divide A into 4 submatrix
- int[][] A11 = new int[n/2][n/2];
- int[][] A12 = new int[n/2][n/2];
- int[][] A21 = new int[n/2][n/2];
- int[][] A22 = new int[n/2][n/2];
- split(A, A11, 0, 0);
- split(A, A12, 0, n/2);
- split(A, A21, n/2, 0);
- split(A, A22, n/2, n/2);
- //divide B into 4 submatric
- int[][] B11 = new int[n/2][n/2];
- int[][] B12 = new int[n/2][n/2];
- int[][] B21 = new int[n/2][n/2];
- int[][] B22 = new int[n/2][n/2];
- split(B, B11, 0, 0);
- split(B, B12, 0, n/2);
- split(B, B21, n/2, 0);
- split(B, B22, n/2, n/2);
- //seven magic products
- int[][] P1 = multiply(A11, sub(B12, B22));
- int[][] P2 = multiply(add(A11,A12), B22);
- int[][] P3 = multiply(add(A21, A22), B11);
- int[][] P4 = multiply(A22, sub(B21, B11));
- int[][] P5 = multiply(add(A11, A22), add(B11, B22));
- int[][] P6 = multiply(sub(A12, A22), add(B21, B22));
- int[][] P7 = multiply(sub(A11, A21), add(B11, B12));
- //new 4 submatrix
- int[][] R11 = add(add(P5, sub(P4, P2)), P6);
- int[][] R12 = add(P1, P2);
- int[][] R21 = add(P3, P4);
- int[][] R22 = sub(sub(add(P1, P5), P3), P7);
- //joint together
- join(R11, R, 0, 0);
- join(R12, R, 0, n/2);
- join(R21, R, n/2, 0);
- join(R22, R, n/2, n/2);
- }
- return R;
- }
- //main
- public static void main(String[] args){
- Scanner scan = new Scanner(System.in);
- System.out.println("Strassen Multiplication Algorithm Test\n");
- Strassen s = new Strassen();
- System.out.println("Fetch the matric A and B...");
- int N = scan.nextInt();
- int[][] A = new int[N][N];
- int[][] B = new int[N][N];
- for (int i = 0; i < N; i++)
- for (int j = 0; j < N; j++)
- A[i][j] = scan.nextInt();
- for (int i = 0; i < N; i++)
- for (int j = 0; j < N; j++)
- B[i][j] = scan.nextInt();
- System.out.println("Fetch Completed!");
- int[][] C = s.multiply(A, B);
- System.out.println("\nmatrices A = ");
- for (int i = 0; i < N; i++){
- for (int j = 0; j < N; j++)
- System.out.print(A[i][j] +" ");
- System.out.println();
- }
- System.out.println("\nmatrices B =");
- for (int i = 0; i < N; i++) {
- for (int j = 0; j < N; j++)
- System.out.print(B[i][j] +" ");
- System.out.println();
- }
- System.out.println("\nProduct of matrices A and B = ");
- for (int i = 0; i < N; i++)
- {
- for (int j = 0; j < N; j++)
- System.out.print(C[i][j] +" ");
- System.out.println();
- }
- }
- }
Conquer and Divide经典例子之Strassen算法解决大型矩阵的相乘的更多相关文章
- Conquer and Divide经典例子之汉诺塔问题
递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...
- Strassen算法
如题,该算法是来自德国的牛逼的数学家strassen搞出来的,因为把n*n矩阵之间的乘法复杂度降低到n^(lg7)(lg的底是2),一开始想当然地认为朴素的做法是n^3,哪里还能有复杂度更低的做法,但 ...
- 4-2.矩阵乘法的Strassen算法详解
题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B ...
- 第四章 分治策略 4.2 矩阵乘法的Strassen算法
package chap04_Divide_And_Conquer; import static org.junit.Assert.*; import java.util.Arrays; import ...
- C/C++中几种经典的垃圾回收算法
1.引用计数算法 引用计数(Reference Counting)算法是每个对象计算指向它的指针的数量,当有一个指针指向自己时计数值加1:当删除一个指向自己的指针时,计数值减1,如果计数值减为0,说明 ...
- python之路第五篇之递归(进阶篇:续:经典例子剖析)
递归 在函数内部,可以调用其他函数; 如果一个函数在内部调用自身本身,这个函数就是递归函数. 例如,我们来计算阶乘: n! = 1 x 2 x 3 x ... x n, 用函数f1(n)表示,可以看出 ...
- jQuery监听事件经典例子
关键字:jQuery监听事件经典例子 js代码: ============================================================ $(function( ...
- 记录几个经典的字符串hash算法
记录几个经典的字符串hash算法,方便以后查看: 推荐一篇文章: http://www.partow.net/programming/hashfunctions/# (1)暴雪字符串hash #inc ...
- C语言经典算法 - 多维矩阵转一维矩阵的代码
下边内容内容是关于C语言经典算法 - 多维矩阵转一维矩阵的内容,应该能对码农也有好处. #include <stdio.h>#include <stdlib.h>int mai ...
随机推荐
- (十)WebGIS中地理坐标与屏幕坐标间的转换原理
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/. 1.前言 地图本身是拥有坐标的,一般可以大致分为平面坐标和经纬度坐标, ...
- 浅谈Hibernate入门
前言 最近打算做一个自己的个人网站,经过仔细思考,打算使用hibernate作为开发的ORM框架,因此各种找资料,由于本人是刚刚接触这技术的,所以就找了比较基础的知识来分享下 基本概述 Hiberna ...
- @Html.Raw显示一张图片
在ASP.NET MVC中,显示一张图片,是很方便的事情,完全可以在控制器中组合html代码,并传给视图. 下面一个简单的例子: public ActionResult HtmlRawImage() ...
- 搭建Go开发及调试环境(LiteIDE + GoClipse) -- Windows篇
这里以Windows7 64位为例,如果是32位环境需安装对应版本程序. 一.安装golang1.2.2 1.3及1.3.1编译生成的二进制文件,无法使用LiteIDE23.2携带的gdb7.7进 ...
- ReactNative——打包发布
1.生成一个签名密钥 ‘ keytool -genkey -v -keystore my-release-key.keystore -alias my-key-alias -keyalg RSA -k ...
- 【工匠大道】markdown使用技巧
本文地址 提纲: 1. 概述 2. 常见技巧 3. 参考文档 1. 概述 常见的markdown的技巧,这里不再谈了,主要是自己感觉比较少见但有用的技巧. 2. 常见技巧 1)[空格]生成空格的效 ...
- Struts2入门(一)——环境搭建和简单例子(Struts2 2.5.2版本)
一.前言 1.了解三大框架 什么是框架? 框架是一种规范,一种规则,一种把技术组织起来的规则,这就是框架. 什么是三大框架(SSH),Struts.hibernate和spring的作用是什么? St ...
- 【原创-算法-实现】异步HTTP请求操作
一.说明 1) 这个类 是我 在真实项目中,优化解决真实问题 时,不参考第三方代码,完全由自己查阅MSDN官方文档 , 完成的一个真实生产环境中使用的功能类 2) 读者在使用此类时,请尊重原创,在代码 ...
- 取出session中的所有属性与值的方法
如果你想取出session中所有的属性和值,可以通过getAttributeNames()方法来实现,具体代码如下 //获取session HttpSession session = request. ...
- highCharts提示框不显示的问题
使用HighCharts插件进行数据展示的时候,鼠标放在数据处没有提示框,或者只有头尾2个提示框,其他提示框不显示,为什么会这样? 1.查看是否使用了tooltip属性,该属性的enabled默认为t ...