埃拉托斯特尼筛法(sieve of Eratosthenes ) 是古希腊数学家埃拉托斯特尼发明的计算素数的方法。对于求解不大于n的所有素数,我们先找出sqrt(n)内的所有素数p1到pk,其中k = sqrt(n),依次剔除Pi的倍数,剩下的所有数都是素数。

具体操作如上述 图片所示。

C++实现

#include<iostream>
#include<vector>
using namespace std;
int main() {
int n;
cin >> n;
vector<bool> isprime(n + 5, true);
vector<int> ans;
for (int i = 2; i <= n; i++) {
if (isprime[i]) {
ans.push_back(i);
for (int j = i * i; j <= n; j += i)isprime[j] = false;
}
}
for (auto i : ans)cout << i << " ";
cout << endl;
return 0;
}

整除问题

给定n,a求最大的k,使n!可以被ak整除但不能被a(k+1)整除。

输入描述

两个整数n(2<=n<=1000),a(2<=a<=1000)

输出描述

示例1

输入

555 12

输出

274

#include<iostream>
#include<vector>
#include<map>
using namespace std;
int main() {
int n, a, temp;
int ans = 0x7fffffff;
cin >> n >> a;
vector<bool> isprime(1010, true);
vector<int> prime; //素数列表
map<int, int> primecntnp; //存储n!的质因子的指数
map<int, int> primecnta; //存储a的质因子的指数
for (int i = 2; i <= 1010; i++) { //采用素数筛选出前1010个数中的素数,并将map初始化
if (isprime[i]) {
prime.push_back(i);
primecntnp[i] = primecnta[i] = 0;
for (int j = i * i; j <= 1010; j += i)isprime[j] = false;
}
}
//4! = 24 = 1*2*3*4 = 2*2*2*3
for (int i = 0; i < prime.size(); i++) { //对n!进行因式分解
temp = n;
while (temp) { //按照p、p*p、p*p*p来进行因式分解
primecntnp[prime[i]] += temp / prime[i];
temp /= prime[i];
}
}
for (int i = 0; i < prime.size(); i++) { //对a进行因式分解
temp = a;
while (temp % prime[i] == 0) {
primecnta[prime[i]]++;
temp /= prime[i];
}
if (primecnta[prime[i]] == 0)continue; //a里面不存在的则无法提供
if (primecntnp[prime[i]] / primecnta[prime[i]] < ans)ans = primecntnp[prime[i]] / primecnta[prime[i]];
}//找到最小的指数,便是最大的k值
cout << ans << endl;
return 0;
}
/*
555 12
274
*/

拓展

Prime Path素数筛与BFS动态规划的综合应用

问题 POJ

Description

The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.

— It is a matter of security to change such things every now and then, to keep the enemy in the dark.

— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!

— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.

— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!

— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.

— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.Now, the minister of finance, who had been eavesdropping, intervened.

— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.

— Hmm, in that case I need a computer program to minimize the cost. You don’t know some very cheap software gurus, do you?

— In fact, I do. You see, there is this programming contest going on… Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.

1033

1733

3733

3739

3779

8779

8179

The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.

Input

One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

Output

One line for each case, either with a number stating the minimal cost or containing the word Impossible.

Sample Input

3
1033 8179
1373 8017
1033 1033

Sample Output

6
7
0

问题大意

从一个素数换到另一个素数,每次只能换一个数字(一位)且换后的每次都是素数。求最小次数?

C++代码

#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 10000; bool isprime[maxn + 1];
int dp[maxn + 1]; int getNext(int num, int t, int change){
//num : 当前的数,t当前的位置,change是改变位的值
if(t == 0) return num / 10 * 10 + change; //最低位
else if(t == 1) return num /100 * 100 + change * 10 + num % 10;
else if(t == 2) return num /1000 * 1000 + change * 100 + num % 100;
else return change * 1000 + num % 1000;
} int main(){
fill(isprime+2, isprime + maxn, true);
for(int i = 2; i <= maxn; i++){
if(isprime[i]){
for(int j = i * i; j <= maxn; j += i){
isprime[j] = false;
}
}
}//打表
int T;
cin>>T;
while(T--){
int a, b;
cin>>a>>b;
fill(dp, dp + maxn, 0x3f);
dp[a] = 0; //记录从一个prime跳跃到另一个prime所需的最少次数 queue<int> q;
q.push(a);
while(!q.empty()){
int cur = q.front(); //取出队列的第一个
q.pop();
for(int i = 0; i < 4; i++){
for(int j = 0; j < 10; j++){
if(i == 3 && j == 0) continue; //
int next = getNext(cur, i, j); //替换
if(isprime[next] == false || dp[next] <= dp[cur]) continue;
// 不是素数不行,如果到next已经有更小的那也不用这个变换路径了
dp[next] = dp[cur] + 1;
q.push(next);
}
}
}
cout<<dp[b]<<endl;
}
return 0;
} /*
3
1033 8179
1373 8017
1033 1033
*/

Prime Path素数筛与BFS动态规划的更多相关文章

  1. POJ 3126 Prime Path 素数筛,bfs

    题目: http://poj.org/problem?id=3126 困得不行了,没想到敲完一遍直接就A了,16ms,debug环节都没进行.人品啊. #include <stdio.h> ...

  2. Prime Path(POJ - 3126)【BFS+筛素数】

    Prime Path(POJ - 3126) 题目链接 算法 BFS+筛素数打表 1.题目主要就是给定你两个四位数的质数a,b,让你计算从a变到b共最小需要多少步.要求每次只能变1位,并且变1位后仍然 ...

  3. Prime Path(素数筛选+bfs)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9519   Accepted: 5458 Description The m ...

  4. POJ - 3126 Prime Path 素数筛选+BFS

    Prime Path The ministers of the cabinet were quite upset by the message from the Chief of Security s ...

  5. Prime Path (poj 3126 bfs)

    Language: Default Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11703   Ac ...

  6. POJ 3216 Prime Path(打表+bfs)

    Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27132   Accepted: 14861 Desc ...

  7. Prime Path(POJ 3126 BFS)

    Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15325   Accepted: 8634 Descr ...

  8. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

  9. POJ 3126 - Prime Path - [线性筛+BFS]

    题目链接:http://poj.org/problem?id=3126 题意: 给定两个四位素数 $a,b$,要求把 $a$ 变换到 $b$.变换的过程每次只能改动一个数,要保证每次变换出来的数都是一 ...

随机推荐

  1. CVE-2019-17671:wrodpress 未授权访问漏洞-复现

    0x00 WordPress简介 WordPress是一款个人博客系统,并逐步演化成一款内容管理系统软件,它是使用PHP语言和MySQL数据库开发的,用户可以在支持 PHP 和 MySQL数据库的服务 ...

  2. 011-指针(上)-C语言笔记

    011-指针(上)-C语言笔记 学习目标 1.[掌握]字符串常用函数 2.[掌握]指针变量的声明 3.[掌握]指针变量的初始化 4.[掌握]函数与指针 5.[掌握]指针的数据类型 6.[掌握]多级指针 ...

  3. Juli函数

  4. 联通友华通信光纤猫PT952G设置无线路由光猫桥接拨号

    #0x1 登陆后台,点击网络,点击宽带设置.选择第二个接口. 0x2 只修改模式,改成Bridge,其他无需修改.然后直接接路由器拨号就行,或者电脑都行. 0x4  恢复默认拨号,这样修改以后,直接连 ...

  5. 详解 Set接口

    (请关注 本人"集合"总集篇博文--<详解 Collection接口>) 在Collection接口的子接口中,最重要的,也是最常见的两个-- List接口 和 Set ...

  6. Redis的三大问题

    一般我们对缓存读操作的时候有这么一个固定的套路: 如果我们的数据在缓存里边有,那么就直接取缓存的. 如果缓存里没有我们想要的数据,我们会先去查询数据库,然后将数据库查出来的数据写到缓存中. 最后将数据 ...

  7. Asp.Net Core 3.1 学习3、Web Api 中基于JWT的token验证及Swagger使用

    1.初始JWT 1.1.JWT原理 JWT(JSON Web Token)是目前最流行的跨域身份验证解决方案,他的优势就在于服务器不用存token便于分布式开发,给APP提供数据用于前后端分离的项目. ...

  8. C#客户端打印条形码

    第一种方法: 引用第三方插件文件zxing.dll // 1.设置条形码规格 EncodingOptions encodeOption = new EncodingOptions(); encodeO ...

  9. <cstring>中常用的两个函数memset()和memcpy()

    <cstring>是c++对c中的<string.h>进行了重写,这两个头文件中的函数用法是一样的,所以在用的时候包含哪个头文件都行.下面介绍一下 <cstring> ...

  10. php phpStudy session存放位置

    如果你仅仅是想知道session保存的文件在哪里,你可以在你的PHP文件当中运行函数:session_save_path之后查看运行结果即可知道session文件的存放目录. 或者: 在php-ini ...