心律失常数据库

目前,国际上公认的标准数据库包含四个,分别为美国麻省理工学院提供的MIT-BIH(Massachusetts Institute of Technology-Beth Israel Hospital Database, MIT-BIH)数据库、美国心脏学会提供的AHA( American heart association,AHA)数据库、欧共体CSE( Common Standards for Quantitative Electrocardiograph,CSE)数据库、欧洲ST-T数据库。

当前使用最广泛且被学术界普遍认可的据库为MIT-BIH心律失常数据库。此数据库中囊括了所有类型的心电信号并且数量丰富,为本文关于心电信号的自动分类研究提供了实验数据。下面对该数据库作详细的说明。

MT-BIH心律失常数据库拥有48条心电记录,且每个记录的时长是30分钟。这些记录来自于47名研究对象。这些研究对象包括25名男性和22名女性,其年龄介于23到89岁(其中记录201与202来自于同一个人)。信号的采样率为360赫兹,AD分辨率为11比特。对于每条记录来说,均包含两个通道的信号。第一个通道一般为MLⅡ导联(记录102和104为V5导联);第二个通道一般为V1导联(有些为V2导联或V5导联,其中记录124号为Ⅴ4导联)。为了保持导联的一致性,往往在研究中采用MLⅡ导联。本文选取MLⅡ导联心电信号进行研究分析。

数据库中的每条记录均包括三个文件,即:头文件、数据文件和注释文件。

(1)头文件头文件[.hea] 通过ASCII码存储方式记录信号的采样频率、采样频率、数据格式使用的导联信息、采样频率、研究者的性别、年龄以及疾病种类等

(2)数据文件数据文件[.dat] 通过二进制的方式存储信号,每三个字节存储两个数值(两导联数据交替存储),每个数值大小是12bit

(3)注释文件注释文件[.atr] 是由专家对信号进行人工标注,并且根据二进制格式进行数据的存储

关于MIT-BIH数据库的一些常用网站

统一术语称呼

我在阅读心电相关论文的时候,常常由于不同文章之间对同一事物的称呼不同而感到困扰。为避免在本文中出现类似情况,现将术语称呼统一如下。

  • 一条心电数据(记录、信号):将编号为100,101...的数据称为一条心电数据(记录),包含了该编号中的所有导联数据。由于本文仅使用MLII导联的数据作为深度学习的训练数据,因此在本文中也特指一条心电数据中的MLII导联部分。
  • 心拍:如文章(一)中图片所示,将一个完整的心电波形称为一个心拍。
  • 信号点(值):连续的心电波形图其实是由一系列频率固定的不连续采样点构成的,将每个采样点称为信号点(值)。

心电数据的读取

下载数据库到本地后打开,你会发现.dat文件中全部都是乱码,这是由于MIT-BIH数据库采用了自定义的format212格式进行编码。所以在读取心电数据的时候,我们需要用到Python中的一个工具包:wfdb。

在Pycharm中新建工程,并将下载好的心电数据集按如图所示的目录结构进行放置。其中ecg_data为心电数据集的文件夹。

在该工程配置的Python环境中安装wfdb包。

pip install wfdb

关于wfdb包的详细使用请参考其官方文档,这里用代码的形式给出一些常用操作。

# 读取编号为data的一条心电数据
def read_ecg_data(data):
'''
读取心电信号文件
sampfrom: 设置读取心电信号的起始位置,sampfrom=0表示从0开始读取,默认从0开始
sampto:设置读取心电信号的结束位置,sampto = 1500表示从1500出结束,默认读到文件末尾
channel_names:设置设置读取心电信号名字,必须是列表,channel_names=['MLII']表示读取MLII导联线
channels:设置读取第几个心电信号,必须是列表,channels=[0, 3]表示读取第0和第3个信号,注意信号数不确定
'''
# 读取所有导联的信号
record = wfdb.rdrecord('../ecg_data/' + data, sampfrom=0, sampto=1500)
# 仅仅读取“MLII”导联的信号
# record = wfdb.rdrecord('../ecg_data/' + data, sampfrom=0, sampto=1500, channel_names=['MLII'])
# 仅仅读取第0个信号(MLII)
# record = wfdb.rdrecord('../ecg_data/' + data, sampfrom=0, sampto=1500, channels=[0]) # 查看record类型
print(type(record))
# 查看类中的方法和属性
print(dir(record)) # 获得心电导联线信号,本文获得是MLII和V1信号数据
print(record.p_signal)
print(np.shape(record.p_signal))
# 查看导联线信号长度,本文信号长度1500
print(record.sig_len)
# 查看文件名
print(record.record_name)
# 查看导联线条数,本文为导联线条数2
print(record.n_sig)
# 查看信号名称(列表),本文导联线名称['MLII', 'V1']
print(record.sig_name)
# 查看采样率
print(record.fs) '''
读取注解文件
sampfrom: 设置读取心电信号的起始位置,sampfrom=0表示从0开始读取,默认从0开始
sampto:设置读取心电信号的结束位置,sampto=1500表示从1500出结束,默认读到文件末尾
'''
annotation = wfdb.rdann('../ecg_data/' + data, 'atr')
# 查看annotation类型
print(type(annotation))
# 查看类中的方法和属性
print(dir(annotation)) # 标注每一个心拍的R波的尖锋位置的信号点,与心电信号对应
print(annotation.sample)
# 标注每一个心拍的类型N,L,R等等
print(annotation.symbol)
# 被标注的数量
print(annotation.ann_len)
# 被标注的文件名
print(annotation.record_name)
# 查看心拍的类型
print(wfdb.show_ann_labels()) # 画出数据
draw_ecg(record.p_signal)
# 返回一个numpy二维数组类型的心电信号,shape=(65000,1)
return record.p_signal

在这些函数中,使用最多的是通过record=wfdb.rdrecord来获取心电数据信息,以及通过annotation=wfdb.rdann来获取心拍类型信息。需要注意的是record的类型是一个(65000,1)的二维数组,需要先将其转换成一维数组才可以对其进行预处理,关于预处理的这部分内容将在下篇文章中进行叙述。

使用Python+TensorFlow2构建基于卷积神经网络(CNN)的ECG心电信号识别分类(二)的更多相关文章

  1. 深度学习之卷积神经网络(CNN)详解与代码实现(二)

    用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...

  2. 基于卷积神经网络CNN的电影推荐系统

    本项目使用文本卷积神经网络,并使用MovieLens数据集完成电影推荐的任务. 推荐系统在日常的网络应用中无处不在,比如网上购物.网上买书.新闻app.社交网络.音乐网站.电影网站等等等等,有人的地方 ...

  3. 【RS】Automatic recommendation technology for learning resources with convolutional neural network - 基于卷积神经网络的学习资源自动推荐技术

    [论文标题]Automatic recommendation technology for learning resources with convolutional neural network ( ...

  4. 深度学习项目——基于卷积神经网络(CNN)的人脸在线识别系统

    基于卷积神经网络(CNN)的人脸在线识别系统 本设计研究人脸识别技术,基于卷积神经网络构建了一套人脸在线检测识别系统,系统将由以下几个部分构成: 制作人脸数据集.CNN神经网络模型训练.人脸检测.人脸 ...

  5. 基于MNIST数据的卷积神经网络CNN

    基于tensorflow使用CNN识别MNIST 参数数量:第一个卷积层5x5x1x32=800个参数,第二个卷积层5x5x32x64=51200个参数,第三个全连接层7x7x64x1024=3211 ...

  6. python机器学习卷积神经网络(CNN)

    卷积神经网络(CNN) 关注公众号"轻松学编程"了解更多. 一.简介 ​ 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人 ...

  7. TensorFlow 2.0 深度学习实战 —— 浅谈卷积神经网络 CNN

    前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,Conv ...

  8. Python机器学习笔记:卷积神经网络最终笔记

    这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中 ...

  9. 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn

    https://www.cnblogs.com/31415926535x/p/11001669.html 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn ...

随机推荐

  1. mysql导出

    --all-databases , -A 导出全部数据库. mysqldump -uroot -p --all-databases --all-tablespaces , -Y 导出全部表空间. my ...

  2. 7.2 java 类的定义和使用

    /* * 类的定义: * 类是用来描述现实世界的事物的 * * 事物: * 属性 事物的描述信息 * 行为 事物能够做什么 * * 类是如何和事物进行对应的呢? * 类: * 成员变量 * 成员方法 ...

  3. JS入门系列(1)-原型-函数原型

    实例1: 首先定义一个Persion类或者说是函数 var p1 = Persion();:表示,作为普通函数调用 var p2 = new Persion();:表示,作为构造器调用 创建函数之后, ...

  4. AJ学IOS(32)UI之Quartz2D矩阵操作和图片剪切

    AJ分享,必须精品 矩阵操作 矩阵操作:(旋转,缩放,平移) 通过矩阵操作,把画出来的东西进行形变 旋转操作 方法:CGContextRotateCTM(<#CGContextRef c#> ...

  5. QMS产品 - MasterControl 质量管理活动

    主要质量管理活动如下所示: CAPA 纠正措施/预防措施 Corrective Maintenance 纠正措施 Preventive Maintenance 预防措施 Customs Complai ...

  6. Davor COCI 2018

    当题目中有多组解,但要某值最大,该怎么办? 本文为博客园ShyButHandsome的原创作品,转载请注明出处 题目描述 After successfully conquering the South ...

  7. Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(九)之Interfaces

    Interfaces and abstract classes provide more structured way to separate interface from implementatio ...

  8. php开发中如何判断 是否微信访问

    在开发中遇到了这样一个需求,仅允许在微信中访问,所以就要对微信浏览器访问进行判断,本篇博文讲述如何判断是否是微信访问. /** * 判断是否微信访问 * @return bool */ functio ...

  9. matlab计算相对功率

    1.对脑电数据进行db4四层分解,因为脑电频率是在0-64HZ,分层后如图所示, 细节分量[d1 d2 d3 d4] 近似分量[a4] 重建细节分量和近似分量,然后计算对应频段得相对功率谱,重建出来得 ...

  10. Python 分析后告诉你闲鱼上哪些商品抢手?

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:[Airpython] PS:如有需要Python学习资料的小伙伴可以 ...