pytesseract 识别率低提升方法
pytesseract 识别率低提升方法
一.跟换识别语言包
下载地址https://github.com/tesseract-ocr/tessdata
二.修改图片的灰度
from PIL import Image
from PIL import ImageEnhance
import pytesseract
img = Image.open('sanyecao.jpg')
img = img.convert('RGB') #这里也可以尝试使用L
enhancer = ImageEnhance.Color(img)
enhancer = enhancer.enhance(0)
enhancer = ImageEnhance.Brightness(enhancer)
enhancer = enhancer.enhance(2)
enhancer = ImageEnhance.Contrast(enhancer)
enhancer = enhancer.enhance(8)
enhancer = ImageEnhance.Sharpness(enhancer)
img = enhancer.enhance(20)
text=pytesseract.image_to_string(img)
三.结合cv2,np对于图片处理后在进行读取
这个情况有很多种,也不说了,可以自己去尝试,简单写个调整图片亮度
#调整亮度
filename = "sanyecao.jpg"
img = cv2.imread(filename, 0)
print(np.shape(img))
kernel = np.ones((1,1), np.uint8)
dilate = cv2.dilate(img, kernel, iterations=1)
cv2.imwrite('new_dilate.jpg', dilate)
#还有些常用的方法
cv2.Canny
cv2.erode
cv2.rectangle
original_img = cv2.imread("qingwen.png", 0)
# canny(): 边缘检测
img1 = cv2.GaussianBlur(original_img,(3,3),0)
canny = cv2.Canny(img1, 50, 150)
# 形态学:边缘检测
_,Thr_img = cv2.threshold(original_img,210,255,cv2.THRESH_BINARY)#设定红色通道阈值210(阈值影响梯度运算效果)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5,5)) #定义矩形结构元素
gradient = cv2.morphologyEx(Thr_img, cv2.MORPH_GRADIENT, kernel) #梯度
cv2.imshow("original_img", original_img)
cv2.imshow("gradient", gradient)
cv2.imshow('Canny', canny)
pytesseract 识别率低提升方法的更多相关文章
- Python3.x:pytesseract识别率提高(样本训练)
Python3.x:pytesseract识别率提高(样本训练) 1,下载并安装3.05版本的tesseract 地址:https://sourceforge.net/projects/tessera ...
- tesseract-ocr 提高验证码识别率手段之---识别码库训练方法
本文是对tesseract-ocr 使用的进一步技术升级说明,使用默认的识别库识别率比较低怎么办? 不用着急,tesseract-ocr本身的工具中提供了使用你提供的素材进行人工修正以提高识别率的方法 ...
- Android Zxing 转换竖屏扫描且提高识别率
最近的一个Android需要用到扫码功能,用的是Zxing开源库.Zxing的集成就不说了,但是Zxing默认的是横屏扫码,在实际生产中并不适用,需要改为竖屏扫描. 转竖屏步骤: 1>. And ...
- 深入学习使用ocr算法识别图片中文字的方法
公司有个需求,简单点说需要从一张图片中识别出中文,通过python来实现,当然其他程序也行,只要能实现,而小编主要学习python,所以就提了python.一个小白在网上遨游了一天,终于找到一丝丝思绪 ...
- Python的开源人脸识别库:离线识别率高达99.38%
Python的开源人脸识别库:离线识别率高达99.38% github源码:https://github.com/ageitgey/face_recognition#face-recognitio ...
- Python的开源人脸识别库:离线识别率高达99.38%(附源码)
Python的开源人脸识别库:离线识别率高达99.38%(附源码) 转https://cloud.tencent.com/developer/article/1359073 11.11 智慧上云 ...
- 微软亚洲实验室一篇超过人类识别率的论文:Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification ImageNet Classification
在该文章的两大创新点:一个是PReLU,一个是权值初始化的方法.下面我们分别一一来看. PReLU(paramter ReLU) 所谓的PRelu,即在 ReLU激活函数的基础上加入了一个参数,看一个 ...
- 组合方法(ensemble method) 与adaboost提升方法
组合方法: 我们分类中用到非常多经典分类算法如:SVM.logistic 等,我们非常自然的想到一个方法.我们是否可以整合多个算法优势到解决某一个特定分类问题中去,答案是肯定的! 通过聚合多个分类器的 ...
- android实现图片识别的几种方法
实现android图像识别的几种方法 点击这里下载第一种代码 最近完成了毕业设计,论文名为基于图像识别的移动人口管理系统.编写过程中学到了几种图像识别的技术,先写下来与大家分享. 第一种,直接使用免费 ...
随机推荐
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- 02-09Android学习进度报告九
今天我学习了关于Adapter的基础知识,了解了Android开发的一些思路和架构. 首先我了解了Adapter的概念以及开发过程中常用的Adapter: BaseAdapter:抽象类,实际开发中我 ...
- Java中小数精度问题
代码如下:主要是利用java中写好的DecimalFormat类进行设置(#,0,%) import java.text.DecimalFormat; import java.util.Arrays; ...
- Django 学习之内置Admin
一.Admin组件 Django内置的Admin是对于model中对应的数据表进行增删改查提供的组件,使用方式有: Django Admin内部依赖: 依赖APP: django.contrib.au ...
- redis 之redis集群与集群配置
一.为什么要用集群 redis3.0集群采用P2P模式,完全去中心化,将redis所有的key分成了16384个槽位,每个redis实例负责一部分slot,集群中的所有信息通过节点数据交换而更新. r ...
- ubuntu14 安装Sublime Text 3
Step1 从官网下载Sublime Text3 安装包 sublime_text_3_build_3176_x64.tar.bz2,如果有网络问题,请挂VPN或者从其他地方下载. 拷贝至/home/ ...
- linux查漏补缺-Linux文件目录结构一览表
FHS 标准 FHS(Filesystem Hierarchy Standard),文件系统层次化标准,该标准规定了 Linux 系统中所有一级目录以及部分二级目录(/usr 和 /var)的用途. ...
- pytorch中tensor张量数据基础入门
pytorch张量数据类型入门1.对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot ...
- 二 Mybatis架构&MybatisDao的两种开发方式(原始Dao,接口动态代理)
MyBatis架构图 三个对象: SqlSessionFactoryBuilder.SqlSessionFactory.SqlSession SqlSessionFactoryBuilder:主要用来 ...
- 单词「TJOI 2013」(AC自动机)
传送门 我们正常的建好Trie后求一遍fail.之后对于每一个节点,从它的fail连向它一条单项边.然后从根节点开始dfs. 记sum[i]代表从根到i号节点所代表的的字符串出现的次数,即该点的权值. ...