Java实现 LeetCode 60 第k个排列
60. 第k个排列
给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
“123”
“132”
“213”
“231”
“312”
“321”
给定 n 和 k,返回第 k 个排列。
说明:
给定 n 的范围是 [1, 9]。
给定 k 的范围是[1, n!]。
示例 1:
输入: n = 3, k = 3
输出: “213”
示例 2:
输入: n = 4, k = 9
输出: “2314”
PS:
直接用回溯法做的话需要在回溯到第k个排列时终止就不会超时了, 但是效率依旧感人
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推
算出来, 对于n=4, k=15 找到k=15排列的过程:
1 + 对2,3,4的全排列 (3!个)
2 + 对1,3,4的全排列 (3!个) 3, 1 + 对2,4的全排列(2!个)
3 + 对1,2,4的全排列 (3!个)-------> 3, 2 + 对1,4的全排列(2!个)-------> 3, 2, 1 + 对4的全排列(1!个)-------> 3214
4 + 对1,2,3的全排列 (3!个) 3, 4 + 对1,2的全排列(2!个) 3, 2, 4 + 对1的全排列(1!个)
确定第一位:
k = 14(从0开始计数)
index = k / (n-1)! = 2, 说明第15个数的第一位是3
更新k
k = k - index*(n-1)! = 2
确定第二位:
k = 2
index = k / (n-2)! = 1, 说明第15个数的第二位是2
更新k
k = k - index*(n-2)! = 0
确定第三位:
k = 0
index = k / (n-3)! = 0, 说明第15个数的第三位是1
更新k
k = k - index*(n-3)! = 0
确定第四位:
k = 0
index = k / (n-4)! = 0, 说明第15个数的第四位是4
最终确定n=4时第15个数为3214
class Solution {
public String getPermutation(int n, int k) {
StringBuilder sb = new StringBuilder();
// 候选数字
List<Integer> candidates = new ArrayList<>();
// 分母的阶乘数
int[] factorials = new int[n+1];
factorials[0] = 1;
int fact = 1;
for(int i = 1; i <= n; ++i) {
candidates.add(i);
fact *= i;
factorials[i] = fact;
}
k -= 1;
for(int i = n-1; i >= 0; --i) {
// 计算候选数字的index
int index = k / factorials[i];
sb.append(candidates.remove(index));
k -= index*factorials[i];
}
return sb.toString();
}
}
Java实现 LeetCode 60 第k个排列的更多相关文章
- LeetCode 60 第K个排列
题目: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "13 ...
- LeetCode 60. 第k个排列(Permutation Sequence)
题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "1 ...
- LeetCode:第K个排列【60】
LeetCode:第K个排列[60] 题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: &quo ...
- LeetCode 中级 - 第k个排列(60)
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3 ...
- [LeetCode]60. Permutation Sequence求全排列第k个
/* n个数有n!个排列,第k个排列,是以第(k-1)/(n-1)!个数开头的集合中第(k-1)%(n-1)!个数 */ public String getPermutation(int n, int ...
- Java for LeetCode 023 Merge k Sorted Lists
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 解 ...
- 60第K个排列
题目:给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列.按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" &quo ...
- 力扣60——第k个排列
原题 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: 1. "123" 2. &qu ...
- leetCode 60.Permutation Sequence (排列序列) 解题思路和方法
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
随机推荐
- ObjectOutputStream:对象的序列化流 ObjectInputStream:对象的反序列化流
package com.itheima.demo04.ObjectStream; import java.io.FileOutputStream; import java.io.IOException ...
- .netcore 部署时遇到413 Request Entity Too Large 和 413Payload Too Large 的问题
.netcore3.1 遇到一个webapi 上传大文件问题 首先,在kestrel模式调试模式下上传 会报错413, 需要在三个地方添加 1.startup中 这里设置的2g最大值 2.在progr ...
- git工作中最常用的用法教程,不走命令行
·1.1 git的概述 Git(读音为/gɪt/.)是一个开源的分布式版本控制系统,可以有效.高速的处理从很小到非常大的项目版本管理. Git 是 Linus Torvalds 为了帮助管理 Lin ...
- UEFI Shell --常用命令解释
UEFI Shell解释 UEFI Shell 是一个提供用户和UEFI系统之间的接口,进入UEFI Shell可以对计算机系统进行配置 命令解释: 单独的help就可以输出所有指令,不做特殊说明,内 ...
- 「雕爷学编程」Arduino动手做(38)——joystick双轴摇杆模块
37款传感器与模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的.鉴于本人手头积累了一些传感器和模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里 ...
- 使用react的一点提醒17/10/26
1.不直接操作dom 今天在和同学讨论的时候,发现了一些以前没注意的问题. 这段时间自己学习时一直都是用原生js写代码,但是以前在公司经常使用jq,也不知不觉间让我习惯了操作dom的倾向. 使用vue ...
- 8.4 Go select
8.4 Go select Go语言引入了select关键字,用于处理异步IO问题,语义和switch特别相似.语法由select开始,每个条件由case语句来描述.每个case语句必须是IO操作. ...
- VMware 11安装Mac OS X 10.10 (转载)
VM11安装Mac OS X 10.10 工具/原料 1.VMware Workstation 112.unlocker 203(for OS X 插件补丁)3.Mac OS X 10.10镜像方法/ ...
- Spring全家桶——SpringBoot之AOP详解
Spring全家桶--SpringBoot之AOP详解 面向方面编程(AOP)通过提供另一种思考程序结构的方式来补充面向对象编程(OOP). OOP中模块化的关键单元是类,而在AOP中,模块化单元是方 ...
- Springboot 关于日期时间格式化处理方式总结
项目中使用LocalDateTime系列作为DTO中时间的数据类型,但是SpringMVC收到参数后总报错,为了配置全局时间类型转换,尝试了如下处理方式. 注:本文基于Springboot2.x测试, ...