60. 第k个排列

给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。

按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

“123”

“132”

“213”

“231”

“312”

“321”

给定 n 和 k,返回第 k 个排列。

说明:

给定 n 的范围是 [1, 9]。

给定 k 的范围是[1, n!]。

示例 1:

输入: n = 3, k = 3

输出: “213”

示例 2:

输入: n = 4, k = 9

输出: “2314”

PS:

直接用回溯法做的话需要在回溯到第k个排列时终止就不会超时了, 但是效率依旧感人

可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推

算出来, 对于n=4, k=15 找到k=15排列的过程:

    1 + 对2,3,4的全排列 (3!个)
2 + 对1,3,4的全排列 (3!个) 3, 1 + 对2,4的全排列(2!个)
3 + 对1,2,4的全排列 (3!个)-------> 3, 2 + 对1,4的全排列(2!个)-------> 3, 2, 1 + 对4的全排列(1!个)-------> 3214
4 + 对1,2,3的全排列 (3!个) 3, 4 + 对1,2的全排列(2!个) 3, 2, 4 + 对1的全排列(1!个) 确定第一位:
k = 14(从0开始计数)
index = k / (n-1)! = 2, 说明第15个数的第一位是3
更新k
k = k - index*(n-1)! = 2
确定第二位:
k = 2
index = k / (n-2)! = 1, 说明第15个数的第二位是2
更新k
k = k - index*(n-2)! = 0
确定第三位:
k = 0
index = k / (n-3)! = 0, 说明第15个数的第三位是1
更新k
k = k - index*(n-3)! = 0
确定第四位:
k = 0
index = k / (n-4)! = 0, 说明第15个数的第四位是4
最终确定n=4时第15个数为3214
class Solution {
public String getPermutation(int n, int k) { StringBuilder sb = new StringBuilder();
// 候选数字
List<Integer> candidates = new ArrayList<>();
// 分母的阶乘数
int[] factorials = new int[n+1];
factorials[0] = 1;
int fact = 1;
for(int i = 1; i <= n; ++i) {
candidates.add(i);
fact *= i;
factorials[i] = fact;
}
k -= 1;
for(int i = n-1; i >= 0; --i) {
// 计算候选数字的index
int index = k / factorials[i];
sb.append(candidates.remove(index));
k -= index*factorials[i];
}
return sb.toString();
}
}

Java实现 LeetCode 60 第k个排列的更多相关文章

  1. LeetCode 60 第K个排列

    题目: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "13 ...

  2. LeetCode 60. 第k个排列(Permutation Sequence)

    题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "1 ...

  3. LeetCode:第K个排列【60】

    LeetCode:第K个排列[60] 题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: &quo ...

  4. LeetCode 中级 - 第k个排列(60)

    可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3 ...

  5. [LeetCode]60. Permutation Sequence求全排列第k个

    /* n个数有n!个排列,第k个排列,是以第(k-1)/(n-1)!个数开头的集合中第(k-1)%(n-1)!个数 */ public String getPermutation(int n, int ...

  6. Java for LeetCode 023 Merge k Sorted Lists

    Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 解 ...

  7. 60第K个排列

    题目:给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列.按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:    "123"    &quo ...

  8. 力扣60——第k个排列

    原题 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: 1. "123" 2. &qu ...

  9. leetCode 60.Permutation Sequence (排列序列) 解题思路和方法

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

随机推荐

  1. hdu5381 The sum of gcd]莫队算法

    题意:http://acm.hdu.edu.cn/showproblem.php?pid=5381 思路:这个题属于没有修改的区间查询问题,可以用莫队算法来做.首先预处理出每个点以它为起点向左和向右连 ...

  2. [hdu2222]ac自动机(模板)

    题意:一个文本串+多个模板串的匹配问题 思路:裸的ac自动机. #pragma comment(linker, "/STACK:10240000,10240000") #inclu ...

  3. MySQL安装(linux)

    Centos 安装mysql 安装mariadb yum install mariadb mariadb-server mariadb-devel 安装mysql rpm -qa | grep MyS ...

  4. SQL SERVER 的窗体函数OVER的使用:row_number/rank/dense_rank

    举个例子给大家加深印象,也方便理解: 1.目前有这几笔数据: Select as score into #studentSoure union all Select as score union al ...

  5. mybatis中 #{} 和 ${}

    在mybatis中#{}表示一个占位符: 1.#将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号 2.#在很大程度上可以防止sql注入 3.例如#{id}:#{}中的id表示输入的参数名称 ...

  6. 用项目强化你的webpack

    用你的webpack实现vue-cli 本文围绕前端工程化,用webpack从零搭建一个完整项目的过程 本文核心知识点: webpack的使用 vue组件化思想 Element-UI的使用 别走别走, ...

  7. Dozer-对象属性映射工具类

    Dozer-对象属性映射工具类 工具类代码: import java.util.List; import java.util.concurrent.CopyOnWriteArrayList; impo ...

  8. sqlservere小计合计总计

    SELECT CASE WHEN GROUPING(F1) = 1 THEN '总计' WHEN GROUPING(F1) = 0 AND GROUPING(F2) = 1 THEN F1+'合计' ...

  9. webstorm-在不删除硬盘文件的条件下移除项目

    一段时间没用之后会忘记如何在webstorm里移除一个项目,要花很长的时间去找到底如何才能移除,所以特地把它记录下来了,方便下次忘记的时候可以查阅 把鼠标移在你要移除的那个项目上然后按下Delete键 ...

  10. wordpress另一更新正在进行

    登录mysql,然后进入wordpress数据库, use wordpress select * from wp_options where option_name='core_updater.loc ...