题意:判断简单多边形内是否可以放一个半径为R的圆

思路:如果这个多边形是正多边形,令r(x,y)为圆心在(x,y)处多边形内最大圆的半径,不难发现,f(x,y)越靠近正多边形的中心,r越大,所以可以利用模拟退火法来逼近最优点。对于一般的多边形,由于可能存在多个这样的"局部最优点",所以可以选不同的点作为起点进行多若干次模拟退火即可。

模拟退火的过程:每次由原状态S生成一个新状态T,如果T比S优,那么接受这一次转移,否则以一定概率P接受这次转移,因为这样可能会跳过局部最优解而得到全局最优解。

PS:步长每次改变的系数一般设为0.8~0.9,eps不能设太高。

#pragma comment(linker, "/STACK:10240000")
#include <bits/stdc++.h>
using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii; namespace Debug {
void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<" ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
}
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
/* -------------------------------------------------------------------------------- */ const double eps = 1e-4;/** 设置比较精度 **/
struct Real {
double x;
double get() { return x; }
int read() { return scanf("%lf", &x); }
Real(const double &x) { this->x = x; }
Real() {}
Real abs() { return x > ? x : -x; } Real operator + (const Real &that) const { return Real(x + that.x);}
Real operator - (const Real &that) const { return Real(x - that.x);}
Real operator * (const Real &that) const { return Real(x * that.x);}
Real operator / (const Real &that) const { return Real(x / that.x);}
Real operator - () const { return Real(-x); } Real operator += (const Real &that) { return Real(x += that.x); }
Real operator -= (const Real &that) { return Real(x -= that.x); }
Real operator *= (const Real &that) { return Real(x *= that.x); }
Real operator /= (const Real &that) { return Real(x /= that.x); } bool operator < (const Real &that) const { return x - that.x <= -eps; }
bool operator > (const Real &that) const { return x - that.x >= eps; }
bool operator == (const Real &that) const { return x - that.x > -eps && x - that.x < eps; }
bool operator <= (const Real &that) const { return x - that.x < eps; }
bool operator >= (const Real &that) const { return x - that.x > -eps; } friend ostream& operator << (ostream &out, const Real &val) {
out << val.x;
return out;
}
friend istream& operator >> (istream &in, Real &val) {
in >> val.x;
return in;
}
}; struct Point {
Real x, y;
int read() { return scanf("%lf%lf", &x.x, &y.x); }
Point(const Real &x, const Real &y) { this->x = x; this->y = y; }
Point() {}
Point operator + (const Point &that) const { return Point(this->x + that.x, this->y + that.y); }
Point operator - (const Point &that) const { return Point(this->x - that.x, this->y - that.y); }
Real operator * (const Point &that) const { return x * that.x + y * that.y; }
Point operator * (const Real &that) const { return Point(x * that, y * that); }
Point operator += (const Point &that) { return Point(this->x += that.x, this->y += that.y); }
Point operator -= (const Point &that) { return Point(this->x -= that.x, this->y -= that.y); }
Point operator *= (const Real &that) { return Point(x *= that, y *= that); } bool operator == (const Point &that) const { return x == that.x && y == that.y; } Real cross(const Point &that) const { return x * that.y - y * that.x; }
Real dist() { return sqrt((x * x + y * y).get()); }
};
typedef Point Vector; struct Segment {
Point a, b;
Segment(const Point &a, const Point &b) { this->a = a; this->b = b; }
Segment() {}
bool intersect(const Segment &that) const {
Point c = that.a, d = that.b;
Vector ab = b - a, cd = d - c, ac = c - a, ad = d - a, ca = a - c, cb = b - c;
return ab.cross(ac) * ab.cross(ad) < && cd.cross(ca) * cd.cross(cb) < ;
}
Point getLineIntersection(const Segment &that) const {
Vector u = a - that.a, v = b - a, w = that.b - that.a;
Real t = w.cross(u) / v.cross(w);
return a + v * t;
}
Real Distance(Point P) {
Point A = a, B = b;
if (A == B) return (P - A).dist();
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if (v1 * v2 < ) return v2.dist();
if (v1 * v3 > ) return v3.dist();
return v1.cross(v2).abs() / v1.dist();
}
}; const int maxn = ;
double PI = acos(-1.0); Point p[maxn];
int n; Real getAngel(Point o, Point a, Point b) {
a -= o;
b -= o;
Real ans = acos((a * b / a.dist() / b.dist()).get());
return a.cross(b) <= ? ans : -ans;
} bool inPolygon(Point o) {
Real total = ;
for (int i = ; i < n; i ++) {
total += getAngel(o, p[i], p[(i + ) % n]);
}
return total.abs() > PI;
} Real getR(Point o) {
Real ans = 1e9;
for (int i = ; i < n; i ++) {
Segment seg(p[i], p[(i + ) % n]);
umin(ans, seg.Distance(o));
}
return ans;
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
while (cin >> n, n) {
p[].read();
Real maxx = p[].x, minx = p[].x, maxy = p[].y, miny = p[].y;
for (int i = ; i < n; i ++) {
p[i].read();
umax(maxx, p[i].x);
umin(minx, p[i].x);
umax(maxy, p[i].y);
umin(miny, p[i].y);
}
Real R;
R.read();
Point a(minx, miny), b(maxx, maxy);
bool ok = false;
for (int i = ; !ok && i < n; i ++) {
Real deta = (b - a).dist() / ;
Point O = (p[i] + p[(i + ) % n]) * 0.5;
int cnt = ;
while (!ok && deta > && cnt < ) {
for (int j = ; ; j ++) {
double randnum = rand();
Point newp(O.x + deta * sin(randnum), O.y + deta * cos(randnum));
if (!inPolygon(newp)) continue;
Real buf = getR(newp);
if (buf > getR(O) || j > ) { /** 这里考虑了概率因素 **/
if (buf >= R) ok = true;
O = newp;
break;
}
}
deta *= 0.8;
cnt ++;
}
}
puts(ok? "Yes" : "No");
} }

[hdu3644 A Chocolate Manufacturer's Problem]模拟退火,简单多边形内最大圆的更多相关文章

  1. HDU - 3644:A Chocolate Manufacturer's Problem(模拟退火, 求多边形内最大圆半径)

    pro:给定一个N边形,然后给半径为R的圆,问是否可以放进去.  问题转化为多边形的最大内接圆半径.(N<50): sol:乍一看,不就是二分+半平面交验证是否有核的板子题吗. 然而事情并没有那 ...

  2. Codeforces Beta Round #2 C. Commentator problem 模拟退火

    C. Commentator problem 题目连接: http://www.codeforces.com/contest/2/problem/C Description The Olympic G ...

  3. How Cocoa Beans Grow And Are Harvested Into Chocolate

    What is Cocoa Beans Do you like chocolate? Most people do. The smooth, brown candy is deliciously sw ...

  4. bzoj2965

    http://www.lydsy.com/JudgeOnline/problem.php?id=2965 http://www.tsinsen.com/A1385 平面图网络流. 首先我们要将平面图转 ...

  5. bzoj4948: World Final2017 A

    求简单多边形内的最长线段长度 显然存在一组最优解,使其所在直线经过多边形的两个端点,枚举这两个端点,求出直线和多边形的有效交点,从而得出直线有哪些部分在多边形内(含边界). 由于多边形的一些边可能与直 ...

  6. 21天学习caffe(一)

    ubuntu环境安装caffe1 安装依赖 apt-get install libatlas-base-dev apt-get install python-dev apt-get install l ...

  7. 【智能算法】用模拟退火(SA, Simulated Annealing)算法解决旅行商问题 (TSP, Traveling Salesman Problem)

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 文章声明 此文章部分资料和代码整合自网上,来源太多已经无法查明出处,如侵犯您的权利,请联系我删除. 01 什么是旅行商问题(TS ...

  8. Codeforces Problem 598E - Chocolate Bar

    Chocolate Bar 题意: 有一个n*m(1<= n,m<=30)的矩形巧克力,每次能横向或者是纵向切,且每次切的花费为所切边长的平方,问你最后得到k个单位巧克力( k <= ...

  9. 【模拟退火】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem F. Factory

    让你在平面上取一个点,使得其到给定的所有点的距离和最小. 就是“费马点”. 模拟退火……日后学习一下,这是从网上扒的,先存下. #include<iostream> #include< ...

随机推荐

  1. 前后端分离下用jwt做用户认证

    0 前后端分离下的用户信息认证 前端使用Vue+axios,后端使用SpringBoot+SpringSecurity. 为了解决http无状态的问题,我采用jwt(json web token)保存 ...

  2. SpringMVC Spring Mybatis整合篇

    1.创建WEB项目 创建项目:(ssmbuild)步骤略........ 给项目添加lib文件夹,用于存放jar包: 在WEB-INF目录下创建lib文件夹: 创建完成:运行项目时需要把jar导入到l ...

  3. C# 基础知识系列- 13 常见类库介绍(一)

    0. 前言 每篇一个前言,介绍一下这一篇的内容.之前的内容都是针对某些知识点进行的介绍,这篇内容介绍一下实际开发中常用的一些类和命名空间.这一篇是个连续剧,大概有个三四集.嗯,就是这样. 1. Sys ...

  4. Jmeter系列(1)- 环境部署

    如果你想从头学习Jmeter,可以看看这个系列的文章哦 https://www.cnblogs.com/poloyy/category/1746599.html 官网下载Jmeter http://j ...

  5. Phaser都不懂,还学什么多线程

    前面的文章中我们讲到了CyclicBarrier.CountDownLatch的使用,这里再回顾一下CountDownLatch主要用在一个线程等待多个线程执行完毕的情况,而CyclicBarrier ...

  6. Scala教程之:深入理解协变和逆变

    文章目录 函数的参数和返回值 可变类型的变异 在之前的文章中我们简单的介绍过scala中的协变和逆变,我们使用+ 来表示协变类型:使用-表示逆变类型:非转化类型不需要添加标记. 假如我们定义一个cla ...

  7. 二、Vue基础语法

    六:Vue的v-bind指令作用:绑定标签上的所有属性其简写 ":" 6.1:    例如:<p v-bind:id="test">Hello wo ...

  8. Red 编程语言 2019 开发计划:全速前进!

    开发四年只会写业务代码,分布式高并发都不会还做程序员? >>>   Red 编程语言开发团队昨日发布了一篇 "Full steam ahead" 的文章,对其 2 ...

  9. MySQL UDF Dynamic Library Exploit in *nix

    /* } 本文转hackfreer51CTO博客,原文链接:http://blog.51cto.com/pnig0s1992/575448,如需转载请自行联系原作者

  10. js中的filter

    filter是常说的增删改查中的'查',当对一个数组进行筛选时,经常会使用indexOf 和es6中的includes()方法.filter是es5中的一种迭代方法,其定义为:对数组中的每一项运行给定 ...