论文提出NASH方法来进行神经网络结构搜索,核心思想与之前的EAS方法类似,使用网络态射来生成一系列效果一致且继承权重的复杂子网,本文的网络态射更丰富,而且仅需要简单的爬山算法辅助就可以完成搜索,耗时0.5GPU day



来源:晓飞的算法工程笔记 公众号

论文: Simple And Efficient Architecture Search for Convolutional Neural Networks

Introduction


  论文目标在于大量减少网络搜索的计算量并保持结果的高性能,核心思想与EAS算法类似,主要贡献如下:

  • 提供baseline方法,随机构造网络并配合SGDR进行训练,在CIFAR-10上能达到6%-7%的错误率,高于大部分NAS方法。
  • 拓展了EAS在网络态射(network morphisms)上的研究,能够提供流行的网络构造block,比如skip connection和BN。
  • 提出基于爬山算法的神经网络结构搜索NASH,该方法迭代地进行网络搜索,在每次迭代中,对当前网络使用一系列网络态射得到多个新网络,然后使用余弦退火进行快速优化,最终得到性能更好的新网络。在CIFAR-10上,NASH仅需要单卡12小时就可以达到baseline的准确率。

Network Morphism


  $\mathcal{N}(\mathcal{X})$为$\mathcal{X}\in \mathbb{R}^n$上的一系列网络,网络态射(network morphism)为映射$M: \mathcal{N}(\mathcal{X}) \times \mathbb{R}^k \to \mathcal{N}(\mathcal{X}) \times \mathbb{R}^j$,从参数为$w\in \mathbb{R}k$的网络$fw \in \mathcal{N}(\mathcal{X})$转换为参数为$\tilde{w} \in \mathbb{R}j$的网络$g\tilde{w} \in \mathcal{N}(\mathcal{X})$,并且满足公式1,即对于相同的输入,网络的输出不变。

  下面给出几种标准网络结构的网络态射例子:

Network morphism Type I

  将$f^w$进行公式2的替换,$\tilde{w}=(w_i, C, d)$,为了满足公式1,设定$A=1$和$b=0$,可用于添加全连接层。

  另外一种复杂点的策略如公式3,$\tilde{w}=(w_i, C, d)$,设定$C=A^{-1}$和$d=-Cb$,可用于表达BN层,其中$A$和$b$表示统计结构,$C$和$d$为可学习的$\gamma$和$\beta$。

Network morphism Type II

  假设$f_i{w_i}$可由任何函数$h$表示,即$f_i{w_i}=Ah^{w_h}(x)+b$

  则可以将$f^w$,$w_i = (w_h, A, b)$配合任意函数$\tilde{h}{w_{\tilde{h}}}(x)$根据公式4替换为$\tilde{f}{\tilde{w}i}$,$\tilde{w}=(w_i, w{\tilde{h}}, \tilde{A})$,设定$\tilde{A}=0$。这个态射可以表示为两种结构:

  • 增加层宽度,将$h(x)$想象为待拓宽的层,设定$\tilde{h}=h$则可以增加两倍的层宽度。
  • concatenation型的skip connection,假设$h(x)$本身就是一系列层操作$h(x)=h_n(x) \circ \cdots \circ h_0(x)$,设定$\tilde{h}(x)=x$来实现短路连接。

Network morphism Type III

  任何幂等的函数$f_i^{w_i}$都可以通过公式5进行替换,初始化$\tilde{w}_i=w_i$,公式5在无权重的幂等函数上也成立,比如ReLU。

Network morphism Type IV

  任何层$f_i^{w_i}$都可以配合任意函数$h$进行公式6的替换,初始化$\lambda=1$,可用于结合任意函数,特别是非线性函数,也可以用于加入additive型的skip connection。

  此外,不同的网络态射组合也可以产生新的态射,比如可以通过公式2、3和5在ReLU层后面插入"Conv-BatchNorm-Relu"的网络结构。

Architecture Search by Network Morphisms


  NASH方法基于爬山算法,先从小网络开始,对其进行网络态射生成更大的子网络,由于公式1的约束,子网的性能与原网络是一样的,后续子网进行简单的训练看是否有更好的性能,最后选择性能优异的子网进行重复的操作。

  图1可视化了NASH方法的一个step,算法1的ApplyNetMorph(model, n)包含n个网络态射操作,每个为以下方法的随机一种:

  • 加深网络,例如添加Conv-BatchNorm-Relu模块,插入位置和卷积核大小都是随机的,channel数量跟最近的卷积操作一致。
  • 加宽网络,例如使用network morphism type II来加宽输出的channel,加宽比例随机。
  • 添加从层$i$到层$j$的skup connection,使用network morphism type II或IV,插入位置均随机选择。

  由于使用了网络态射,子网继承了原网络的权重且性能一致,NASH方法优势在于能够很快的评估子网的性能,论文使用了简单的爬山算法,当然也可以选择其它的优化策略。

Experiments


Baslines

Retraining from Scratch

CIFAR-10

CIFAR-100

CONCLUSION


  论文提出NASH方法来进行神经网络结构搜索,核心思想与之前的EAS方法类似,使用网络态射来生成一系列效果一致且继承权重的复杂子网,本文的网络态射更丰富,而且仅需要简单的爬山算法辅助就可以完成搜索,耗时0.5GPU day





如果本文对你有帮助,麻烦点个赞或在看呗~

更多内容请关注 微信公众号【晓飞的算法工程笔记】

NASH:基于丰富网络态射和爬山算法的神经网络架构搜索 | ICLR 2018的更多相关文章

  1. MetaQNN : 与Google同场竞技,MIT提出基于Q-Learning的神经网络搜索 | ICLR 2017

    论文提出MetaQNN,基于Q-Learning的神经网络架构搜索,将优化视觉缩小到单层上,相对于Google Brain的NAS方法着眼与整个网络进行优化,虽然准确率差了2-3%,但搜索过程要简单地 ...

  2. 【MetDNA】基于代谢反应网络的大规模代谢物结构鉴定新算法

    代谢是生命体内化学反应的总称,其所包含的代谢物变化规律可直接反映生命体的健康状态.非靶向代谢组学(untargeted metabolomics)可以在系统水平测量生命体内生理或病理状态下所有代谢物的 ...

  3. 基于爬山算法求解TSP问题(JAVA)

    一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选 ...

  4. 基于SNMP的路由拓扑发现算法收集

    一.三层(网络层)发现 算法来源:王娟娟.基于SNMP的网络拓扑发现算法研究.武汉科技大学硕士学位论文,2008 数据结构: 待检路由设备网关链表:存放指定深度内待检路由设备的网关信息,处理后删除. ...

  5. 基于视觉的Web页面分页算法VIPS的实现源代码下载

    基于视觉的Web页面分页算法VIPS的实现源代码下载 - tingya的专栏 - 博客频道 - CSDN.NET 基于视觉的Web页面分页算法VIPS的实现源代码下载 分类: 技术杂烩 2006-04 ...

  6. python复杂网络库networkx:算法

    http://blog.csdn.net/pipisorry/article/details/54020333 Networks算法Algorithms 最短路径Shortest Paths shor ...

  7. R语言构建蛋白质网络并实现GN算法

    目录 R语言构建蛋白质网络并实现GN算法 1.蛋白质网络的构建 2.生物网络的模块发现方法 3.模块发现方法实现和图形展示 4.附录:igraph中常用函数 参考链接 R语言构建蛋白质网络并实现GN算 ...

  8. 基于DFA敏感词查询的算法简析

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 项目中需要对敏感词做一个过滤,首先有几个方案可以选择: a.直 ...

  9. <<一种基于δ函数的图象边缘检测算法>>一文算法的实现。

    原始论文下载: 一种基于δ函数的图象边缘检测算法. 这篇论文读起来感觉不像现在的很多论文,废话一大堆,而是直入主题,反倒使人觉得文章的前后跳跃有点大,不过算法的原理已经讲的清晰了.     一.原理 ...

随机推荐

  1. HTML特殊符号整理

    往网页中输入特殊字符,需在html代码中加入以&开头的字母组合或以&#开头的数字.下面就是以字母或数字表示的特殊符号大全.                               ...

  2. shiro配置springboot的基本配置

    标准配置 对比 https://www.cnblogs.com/xiaozhang666/p/12058341.html  的对应注入查看 package com.zys.sys.config; im ...

  3. vue 下拉列表动画

    点击可以收起,这里注意先给需要收起展开的的容器设置高度,通过样式v-enter和v-leave-to设置结束和开始前的就可以了

  4. vue中使用vue-qrcode生成二维码

    要使用二维码,引入一个包就可以了,使用非常简单,话不多说,看代码吧 //1,引入, import VueQrcode from '@xkeshi/vue-qrcode'; Vue.component( ...

  5. 利用Nginx设置跨域的方式

    1.服务端可控,添加响应头 2.服务端不可控.通过Nginx反向代理 3.服务端不可控.通过Nginx反向代理添加响应头 第一种方法.服务端可控时,可以在服务器端添加响应头(前端+后端解决) 浏览器地 ...

  6. MySql轻松入门系列————第一站 从源码角度轻松认识mysql整体框架图

    一:背景 1. 讲故事 最近看各大技术社区,不管是知乎,掘金,博客园,csdn基本上看不到有小伙伴分享sqlserver类的文章,看样子这些年sqlserver没落了,已经后继无人了,再写sqlser ...

  7. eclipse 界面复原

    Windows-----Perspective-----Reset perspective

  8. 我终于搞清了啥是 HTTPS 了

    引言 最近上海连续下了一周雨,温度一夜之间回到解放前,穿夏装的我被冻得瑟瑟发抖,躲在家里哪也不想去. 在家百无聊赖的刷着网页,看到公众号后台的留言,有同学问我 HTTP 和 HTTPS 有啥区别? 这 ...

  9. java实现第七届蓝桥杯生日蜡烛

    生日蜡烛 生日蜡烛 某君从某年开始每年都举办一次生日party,并且每次都要吹熄与年龄相同根数的蜡烛. 现在算起来,他一共吹熄了236根蜡烛. 请问,他从多少岁开始过生日party的? 请填写他开始过 ...

  10. java实现第六届蓝桥杯打印大X

    打印大X 打印大X 小明希望用星号拼凑,打印出一个大X,他要求能够控制笔画的宽度和整个字的高度. 为了便于比对空格,所有的空白位置都以句点符来代替. 要求输入两个整数m n,表示笔的宽度,X的高度.用 ...