要是没有next_permutation这个函数,这些题觉得还不算特别水,不过也不一定,那样可能就会有相应的模板了。反正正是因为next_permutation这个函数,这些题包括之前的POJ1226,都变得简单起来。

排列
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 17486   Accepted: 6970

Description

题目描述: 

大家知道,给出正整数n,则1到n这n个数可以构成n!种排列,把这些排列按照从小到大的顺序(字典顺序)列出,如n=3时,列出1 2 3,1 3 2,2 1 3,2 3 1,3 1 2,3 2 1六个排列。 



任务描述: 

给出某个排列,求出这个排列的下k个排列,如果遇到最后一个排列,则下1排列为第1个排列,即排列1 2 3…n。 

比如:n = 3,k=2 给出排列2 3 1,则它的下1个排列为3 1 2,下2个排列为3 2 1,因此答案为3 2 1。 

Input

第一行是一个正整数m,表示测试数据的个数,下面是m组测试数据,每组测试数据第一行是2个正整数n( 1 <= n < 1024 )和k(1<=k<=64),第二行有n个正整数,是1,2 … n的一个排列。

Output

对于每组输入数据,输出一行,n个数,中间用空格隔开,表示输入排列的下k个排列。

Sample Input

3
3 1
2 3 1
3 1
3 2 1
10 2
1 2 3 4 5 6 7 8 9 10

Sample Output

3 1 2
1 2 3
1 2 3 4 5 6 7 9 8 10

直接用next_permutation这个函数即可。

代码:

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <string>
#include <cstring>
using namespace std; int num[1030]; int main()
{
int Test,N,Q,i;
cin>>Test;
while(Test--)
{
scanf_s("%d%d",&N,&Q);
for(i=0;i<N;i++)
scanf_s("%d",&num[i]);
for(i=1;i<=Q;i++)
next_permutation(num,num+N);
for(i=0;i<N;i++)
printf("%d ",num[i]);
printf("\n");
}
return 0;
}

Backward Digit Sums
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5072   Accepted: 2923

Description

FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N <= 10) in a certain order and then sum adjacent numbers to produce a new list with one fewer number. They repeat this until only a single number is left. For example,
one instance of the game (when N=4) might go like this:

    3   1   2   4

      4   3   6

        7   9

         16

Behind FJ's back, the cows have started playing a more difficult game, in which they try to determine the starting sequence from only the final total and the number N. Unfortunately, the game is a bit above FJ's mental arithmetic capabilities. 



Write a program to help FJ play the game and keep up with the cows.

Input

Line 1: Two space-separated integers: N and the final sum.

Output

Line 1: An ordering of the integers 1..N that leads to the given sum. If there are multiple solutions, choose the one that is lexicographically least, i.e., that puts smaller numbers first.

Sample Input

4 16

Sample Output

3 1 2 4

Hint

Explanation of the sample: 



There are other possible sequences, such as 3 2 1 4, but 3 1 2 4 is the lexicographically smallest.

题意是要输出N个数,这N个数是从1到N这些数的一个顺序,这样的顺序按照杨辉三角的模式相加起来等于sum,输出相等时的第一个字典顺序。

一看到N是大于1小于10的我就想暴力了。。。

代码:

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; int main()
{
int i,n,sum,a[12];
cin>>n>>sum; for(i=1;i<=10;i++)
a[i]=i;
if(n==1)
{
cout<<1<<endl;
}
else if(n==2)
{
cout<<1<<" "<<2<<endl;
}
else if(n==3)
{
while(1*a[1]+2*a[2]+1*a[3]!=sum)
{
next_permutation(a+1,a+3+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<endl;
}
else if(n==4)
{
while(1*a[1]+3*a[2]+3*a[3]+1*a[4]!=sum)
{
next_permutation(a+1,a+4+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<endl;
}
else if(n==5)
{
while(1*a[1]+4*a[2]+6*a[3]+4*a[4]+1*a[5]!=sum)
{
next_permutation(a+1,a+5+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<endl;
}
else if(n==6)
{
while(1*a[1]+5*a[2]+10*a[3]+10*a[4]+5*a[5]+1*a[6]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<endl;
}
else if(n==7)
{
while(1*a[1]+6*a[2]+15*a[3]+20*a[4]+15*a[5]+6*a[6]+1*a[7]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<endl;
}
else if(n==8)
{
while(1*a[1]+7*a[2]+21*a[3]+35*a[4]+35*a[5]+21*a[6]+7*a[7]+1*a[8]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<" "<<a[8]<<endl;
}
else if(n==9)
{
while(1*a[1]+8*a[2]+28*a[3]+56*a[4]+70*a[5]+56*a[6]+28*a[7]+8*a[8]+1*a[9]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<" "<<a[8]<<" "<<a[9]<<endl;
}
else if(n==10)
{
while(1*a[1]+9*a[2]+36*a[3]+84*a[4]+126*a[5]+126*a[6]+84*a[7]+36*a[8]+9*a[9]+1*a[10]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<" "<<a[8]<<" "<<a[9]<<" "<<a[10]<<endl;
} return 0;
}

The Next Permutation
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 979   Accepted: 717

Description

For this problem, you will write a program that takes a (possibly long) string of decimal digits, and outputs the permutation of those decimal digits that has the next larger value (as a decimal number) than the input number. For example: 



123 -> 132 

279134399742 -> 279134423799 



It is possible that no permutation of the input digits has a larger value. For example, 987.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set is a single line that contains the data set number, followed by a space, followed by up to 80 decimal digits which is the input
value.

Output

For each data set there is one line of output. If there is no larger permutation of the input digits, the output should be the data set number followed by a single space, followed by the string BIGGEST. If there is a solution, the output should be the data
set number, a single space and the next larger permutation of the input digits.

Sample Input

3
1 123
2 279134399742
3 987

Sample Output

1 132
2 279134423799
3 BIGGEST

还是直接使用next_permutation。这个函数是有返回值的,返回值是0时表示已经没有下一个字典顺序了,它要变成第一个字典顺序。返回值是1时表示还有字典顺序的下一个顺序,所以利用函数的这个性质就OK了。

代码:

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; int main()
{
int Test,num;
char s[100]; cin>>Test;
while(Test--)
{
cin>>num>>s;
cout<<num<<" "; int n=next_permutation(s,s+strlen(s)); if(n==0)
cout<<"BIGGEST"<<endl;
else
cout<<s<<endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ1833 & POJ3187 & POJ3785的更多相关文章

  1. POJ1833 &amp; POJ3187 &amp; POJ3785 next_permutation应用

    要是没有next_permutation这个函数,这些题认为还不算特别水,只是也不一定,那样可能就会有对应的模板了. 反正正是由于next_permutation这个函数.这些题包含之前的POJ122 ...

  2. 《挑战程序设计竞赛》2.1 穷竭搜索 POJ2718 POJ3187 POJ3050 AOJ0525

    POJ2718 Smallest Difference Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6509   Acce ...

  3. POJ-3187 Backward Digit Sums---枚举全排列

    题目链接: https://vjudge.net/problem/POJ-3187 题目大意: 输入n,sum,求1~n的数,如何排列之后,相邻两列相加,直到得出最后的结果等于sum,输出1~n的排列 ...

  4. (DFS、全排列)POJ-3187 Backward Digit Sums

    题目地址 简要题意: 输入两个数n和m,分别表示给你1--n这些整数,将他们按一定顺序摆成一行,按照杨辉三角的计算方式进行求和,求使他们求到最后时结果等于m的排列中字典序最小的一种. 思路分析: 不难 ...

  5. POJ-3187 Backward Digit Sums (暴力枚举)

    http://poj.org/problem?id=3187 给定一个个数n和sum,让你求原始序列,如果有多个输出字典序最小的. 暴力枚举题,枚举生成的每一个全排列,符合即退出. dfs版: #in ...

  6. poj1833 排列

                                                                                                         ...

  7. POJ3187 Backward Digit Sums

    给出杨辉三角的顶点值,求底边各个数的值.直接DFS就好了 #include<iostream> #include<cstdio> #include<cstring> ...

  8. 【搜索】POJ-3187 枚举全排列

    一.题目 Description FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to ...

  9. POJ3187 Backward Digit Sums 【暴搜】

    Backward Digit Sums Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4487   Accepted: 25 ...

随机推荐

  1. MariaDB——日志文件

    数据库各类日志  查询日志:   记录每一条sql语句,建议不开启,因为如果访问量过大,会占用相当大的资源,影响数据库的性能.    vim /etc/my.cnf.d/server.cnf    g ...

  2. sql语句中,传入的参数带单引号的问题

    今天在大批量操作数据时,遇到此问题,解决如下: if(cateName.indexOf("'")!=-1){ oql = " select * where name = ...

  3. 厉害了!SpringBoot是如何动起来的!

    程序入口 SpringApplication.run(BeautyApplication.class, args); 执行此方法来加载整个SpringBoot的环境. 1. 从哪儿开始? Spring ...

  4. JavaWeb开发:从购买服务器到简单demo运行

    写这篇文章的目的: 一个是为了记录实施过程,方便自己日后查阅: 另一个是给项目组成员提供一个参考,方便他们以后搭建自己的项目环境: 当然若能帮助到更多的朋友,那就再好不过了:D 需要注意: 我本身也是 ...

  5. PyCharm无法找到已安装的Python类库的解决方法

    一.问题描述 软件系统:Windows10.JetBrains PyCharm Edu 2018.1.1 x64 在命令行cmd中安装python类库包Numpy.Matplotlib.Pandas. ...

  6. python实现PCA算法原理

    PCA主成分分析法的数据主成分分析过程及python原理实现 1.对于主成分分析法,在求得第一主成分之后,如果需要求取下一个主成分,则需要将原来数据把第一主成分去掉以后再求取新的数据X’的第一主成分, ...

  7. vue :style 动态绑定style

    <div class="right userPicture" :style="[{'background':`url(${userImg}) no-repeat c ...

  8. http协议请求报文与响应报文分析

    什么是HTTP协议: HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990年提出,经过几年的使用与发展,得到 不断地完善和扩展.目前在WWW中使用 ...

  9. spring-页面模板配置

    一个可用的freemaker配置: ... @Bean public ViewResolver viewResolver() { FreeMarkerViewResolver fr = new Fre ...

  10. ionic实现滑动的三种方式

    在移动端受屏幕大小所限,展示内容很多的时候,就要使部分区域进行滑动.本文展示项目中所有到的几种方式,大家可以看自己的需求选择合适的滑动方式.实现滑动的基本原理,有两个容器A.B,假如A在外层,B在内层 ...