\[\Large \text{The Proof of Fibonacci GCD}\]
\[\text{By Sangber}\]


\(\text{Fibonacci Sequence}\)

\(\quad \quad \text{If we record sequence}\ \{F_n\}\ \text{as Fibonacci Sequence, then }\{F_n\} \text{ will have these properties:}\)

\[F_i = \begin{cases}1, & i\leq 2 \\ F_{i-1} + F_{i-2}, & \mathrm{otherwise}\end{cases}\]

\(\quad \quad \text{So we can see that } \{F_n\} \text{ is like “1,1,2,3,5,8,13,21...”.}\)


\(\text{GCD}\)

\(\quad \quad \text{“GCD” is the abbreviation of “Greatest Common Divisor”.}\)
\(\quad \quad \text{And we often record } (a, b) \text{ as the GCD of } a \text{ and } b.\)
\(\quad \quad \text{For example, } (12, 15) = 3, (48, 36) = 12.\)


\(\text{Two Theorems about GCD}\)

\(\text{Euclidean theorem}\)

\[(a, b) = (b, a \bmod b), a, b \in N_{+}\]
\(\text{The proof: }\)

  • \(\text{If } a = b, (a, b) = a = b, \text{we can surely tell that the theorem is established.}\)
  • \(\text{If } a < b, (b, a \bmod b) = (b, a) = (a, b), \text{the theorem is established.}\)
  • \(\text{If } a > b, \text{we can assume that } a = k \times b + r, (k \in N_{+}, 0 \le r < b), \text{ so } a \bmod b = r. \\ \text{As for } \forall d, \text{meeting that } d|a \land d|b, d|(a - k \times b), \text{ actually it means } d | r. \\ \text{So we can tell that } (a, b) = (b, r), \text{ that is, } (a, b) = (b, a \bmod b).\)

\(\text{Stein's Algorithm}\)

\[(a, b) = (a, b - a),b > a\]
\(\text{The proof:}\)
\(\text{Actually, the proof of it is similar to that of Euclidean theorem, you can finish it yourselves.}\)


\(\text{One Lemma}\)

\[(F_n,F_{n - 1})=1, n \in N_{+}\]
\(\text{The Proof}\):

  • \(\text{In the case of } n = 1 \text{ and } n = 2,\text{ the lemma is established obviously.}\)
  • \(\text{In the case of } n \ge 2 :\)
    \(\text{Obviously:}\)
    \[F_n > F_{n - 1} > F_{n - 2}, F_n = F_{n - 1} + F_{n - 2}\]
    \[\therefore F_n\ \bmod F_{n - 1} = F_{n - 2}\]
    \(\quad \ \text{According to Euclidean theorem and the lemma above:}\)
    \[(F_n,F_{n-1})=(F_{n-1},F_n\ \bmod\ F_{n-1})=(F_{n-1},F_{n-2})\]
    \[\therefore (F_n,F_{n-1})=(F_{n-1},F_{n-2})=(F_{n-2},F_{n-3})= \cdots =(F_1,F_2)=1\]

\(\text{Fibonacci GCD}\)

\(\quad \quad \text{Here is the expression of the Fibonacci GCD:}\)

\[\forall n,m \in \text{Z}^{+},(F_n, F_m) = F_{(n, m)}\]


\(\text{The Proof of Fibonacci GCD}\)

\(\text{We assume that } n<m.\)
\(\text{Then we use } F_n \text{ and }F_{n+1} \text{ to express } F_{n + 2},F_{n + 3},F_{n + 4},F_{n + 5}\cdots\)

\[
\begin{aligned}
& F_{n + 2} = 1 F_n + 1 F_{n + 1} \\
& F_{n + 3} = 1 F_n + 2 F_{n + 1} \\
& F_{n + 4} = 2 F_n + 3 F_{n + 1} \\
& F_{n + 5} = 3 F_n + 5 F_{n + 1}
\end{aligned} \\
\cdots \cdots
\]

\(\text{We can see that in the expressions above, the coefficients of } F_n \text{ and } F_{n + 1} \text{ meet the properties of the Fibonacci Sequence.}\)
\[\therefore F_m=F_{m - n - 1} \times F_n + F_{m - n} \times F_{n + 1}\]
\[\therefore (F_n, F_m) = (F_n, F_{m - n - 1} \times F_n + F_{m - n} \times F_{n + 1})\]
\(\text{And obviously we can see that :}\)
\[F_n|F_{m-n-1}\times F_n\]
\[\therefore (F_n,F_m)=(F_n,F_{m-n}\times F_{n+1})\]

\(\text{According to the lemma above:}\)
\[(F_n, F_{n + 1}) = 1\]
\[\therefore (F_n, F_m) = (F_n, F_{m - n})\]

\(\text{All in all:}\)
\[\text{If }n<m,(F_n,F_m)=(F_n,F_{m-n})\]

\(\text{We can see that }, \text{the change rule of } n \text{ and } m \text{ meet Stein's Algorithm,so we finally discovered that }\)
\[(F_n,F_m)=F_{(n,m)}\]


\[\Large \text{That's all, thanks!}\]
\[\Huge Q\omega Q\]

The Proof of Fibonacci GCD的更多相关文章

  1. 【前端】Util.js-ES6实现的常用100多个javaScript简短函数封装合集(持续更新中)

    Util.js (持续更新中...) 项目地址: https://github.com/dragonir/Util.js 项目描述 Util.js 是对常用函数的封装,方便在实际项目中使用,主要内容包 ...

  2. 收集有用的 Javascript 片段

    内容目录 数组 arrayMax arrayMin chunk compact countOccurrences deepFlatten difference distinctValuesOfArra ...

  3. 关于斐波拉契数列(Fibonacci)

    斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...

  4. 使用并行的方法计算斐波那契数列 (Fibonacci)

    更新:我的同事Terry告诉我有一种矩阵运算的方式计算斐波那契数列,更适于并行.他还提供了利用TBB的parallel_reduce模板计算斐波那契数列的代码(在TBB示例代码的基础上修改得来,比原始 ...

  5. (转)Fibonacci Tilings

    Fibonacci numbers {Fn, n ≥ 0} satisfy the recurrence relation (1) Fn+2 = Fn+1 + Fn, along with the i ...

  6. fibonacci数列的性质和实现方法

    fibonacci数列的性质和实现方法 1.gcd(fib(n),fib(m))=fib(gcd(n,m)) 证明:可以通过反证法先证fibonacci数列的任意相邻两项一定互素,然后可证n>m ...

  7. BZOJ 2813: 奇妙的Fibonacci

    2813: 奇妙的Fibonacci Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 497  Solved: 134[Submit][Status][ ...

  8. Codeforces 902D/901B - GCD of Polynomials

    传送门:http://codeforces.com/contest/902/problem/D 本题是一个数学问题——多项式整除. 对于两个整数a.b,求最大公约数gcd(a,b)的辗转相除法的函数如 ...

  9. 【学习笔记】关于最大公约数(gcd)的定理

    手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140 结论1 \[\g ...

随机推荐

  1. 【代码审计】VAuditDemo 命令注入漏洞

    一般PHP中可以使用下列函数来执行外部的应用程序或命令 system() exec() passthru() shell_exec() 跟踪$cmd --> 跟进$target,发现传递给tar ...

  2. Composer包收录

    doctrine/annotations #注解 nesbot/carbon #日期和时间处理 gregwar/captcha symfony/console nikic/fast-route #路由 ...

  3. 02-13Android学习进度报告十三

    今天我学习了ListView之checkbox错位问题解决.感觉还是很麻烦的. 好的存储这个Checkbox的方法有很多,你可以放到一个HashMap<Integer, Boolean>中 ...

  4. tomcat配置限制ip和建立图片服务器

    1.配置限制ip访问 打开 tomcat里conf文件下的server.xml 在<Host name="localhost" appBase="webapps&q ...

  5. leetCode练题——12. Integer to Roman

    1.题目 12. Integer to Roman Roman numerals are represented by seven different symbols: I, V, X, L, C,  ...

  6. Java入门笔记 03-面向对象(上)

    介绍:Java是面向对象的程序设计语言,类是面向对象的重要内容,可以把类当成是一种自定义类型,可以使用类来定义变量,这种类型的变量统称为引用变量.也就是说,所有类都是引用类型.Java也支持面向对象的 ...

  7. Lucene的初步了解和学习

    Lucene的学习一,什么是全文检索 1.数据的分类 1.结构化数据 格式固定,长度固定,数据类型固定. 例如:数据库中的数据: 2.非结构化数据 word文档,pdf文档,邮件,html,txt 格 ...

  8. UIKit框架使用总结--看看你掌握了多少

    一.经常使用的,基本就是每次项目迭代都需要使用的 UIView.UILabel.UIImage.UIColor.UIFont.UIImageView.UITextField.UIButton. UIS ...

  9. ubuntu16.04下安装docker和docker-compose

    开始安装 由于apt官方库里的docker版本可能比较旧,所以先卸载可能存在的旧版本:$ sudo apt-get remove docker docker-engine docker-ce dock ...

  10. 关于程序状态字寄存器PSW(Program Status Word)与多核多线程

    内核态(Kernel Mode)与用户态(User Mode) CPU通常有两种工作模式即:内核态和用户态,而在PSW中有一个二进制位控制这两种模式. 内核态:当CPU运行在内核态时,程序可以访问所有 ...