Spark SQL原理解析前言:

Spark SQL源码剖析(一)SQL解析框架Catalyst流程概述

Spark SQL源码解析(二)Antlr4解析Sql并生成树

Spark SQL源码解析(三)Analysis阶段分析

Spark SQL源码解析(四)Optimization和Physical Planning阶段解析

SparkPlan准备阶段介绍

前面经过千辛万苦,终于生成可实际执行的SparkPlan(即PhysicalPlan)。但在真正执行前,还需要做一些准备工作,包括在必要的地方插入一些shuffle作业,在需要的地方进行数据格式转换等等。

这部分内容都在org.apache.spark.sql.execution.QueryExecution类中。我们看看代码

class QueryExecution(val sparkSession: SparkSession, val logical: LogicalPlan) {
......其他代码
lazy val executedPlan: SparkPlan = prepareForExecution(sparkPlan) //调用下面的preparations,然后使用foldLeft遍历preparations中的Rule并应用到SparkPlan
protected def prepareForExecution(plan: SparkPlan): SparkPlan = {
preparations.foldLeft(plan) { case (sp, rule) => rule.apply(sp) }
} /** A sequence of rules that will be applied in order to the physical plan before execution. */
//定义各个Rule
protected def preparations: Seq[Rule[SparkPlan]] = Seq(
PlanSubqueries(sparkSession),
EnsureRequirements(sparkSession.sessionState.conf),
CollapseCodegenStages(sparkSession.sessionState.conf),
ReuseExchange(sparkSession.sessionState.conf),
ReuseSubquery(sparkSession.sessionState.conf))
......其他代码
}

准备阶段是去调用prepareForExecution方法,而prepareForExecution也简单,还是我们早先看过的Rule那一套东西。定义一系列的Rule,然后让Rule去匹配SparkPlan然后转换一遍。

这里在于每条Rule都是干嘛用的,这里介绍一下吧。

PlanSubqueries(sparkSession)

生成子查询,在比较早的版本,Spark SQL还是不支持子查询的,不过现在加上了,这条Rule其实是对子查询的SQL新生成一个QueryExecution(就是我们一直分析的这个流程),还记得QueryExecution里面的变量基本都是懒加载的吧,这些不会立即执行,都是到最后一并执行的,说白了就有点递归的意思。

EnsureRequirements(sparkSession.sessionState.conf)

这条是比较重要的,代码量也多。主要就是验证输出的分区(partition)和我们要的分区是不是一样,不一样那自然需要加入shuffle处理重分区,如果有排序需求还会排序。

CollapseCodegenStages

这个是和一个优化相关的,先介绍下相关背景。Whole stage Codegen在一些MPP数据库被用来提高性能,主要就是将一串的算子,转换成一段代码(Spark sql转换成java代码),从而提高性能。比如下图,一串的算子操作,可以转换成一个java方法,这一一来性能会有一定的提升。

这一步就是在支持Codegen的SparkPlan上添加一个WholeStageCodegenExec,不支持Codegen的SparkPlan则会添加一个InputAdapter。这一点在下面看preparations阶段结果的时候能看到,还有这个优化是默认开启的。

ReuseExchange和ReuseSubquery

这两个都是大概同样的功能就放一块说了。首先Exchange是对shuffle如何进行的描述,可以理解为就是shuffle吧。

这里的ReuseExchange是一个优化措施,去找有重复的Exchange的地方,然后将结果替换过去,避免重复计算。

ReuseSubquery也是同样的道理,如果一条SQL语句中有多个相同的子查询,那么是不会重复计算的,会将计算的结果直接替换到重复的子查询中去,提高性能。

这里我略过了CollapseCodegenStages,这部分比较复杂,也没什么时间看,就先跳过了,大概知道这个东西是一个优化措施就行了。

那再来看看这一阶段后,示例代码会变成什么样吧,先看示例代码:

    //生成DataFrame
val df = Seq((1, 1)).toDF("key", "value")
df.createOrReplaceTempView("src")
//调用spark.sql
val queryCaseWhen = sql("select key from src ")

结果生成如下:

Project [_1#2 AS key#5]
+- LocalTableScan [_1#2, _2#3]

好吧这里看还是和之前Optimation阶段一样,不过断点看就不大一样了。

由于我们的SQL比较简单,所以只多了两个SparkPlan,就是WholeStageCodegenExec和InputAdapter,和上面说的是一致的!

OK,经过以上的准备之后,就要开始最后的执行阶段了。

SparkPlan执行生成RDD阶段

依旧是在QueryExecution里面,

class QueryExecution(val sparkSession: SparkSession, val logical: LogicalPlan) {
......其他代码
lazy val toRdd: RDD[InternalRow] = executedPlan.execute()
......其他代码
}

这里实际上是调用了之前生成的SparkPlan的execute()方法,这个方法最终会再调用它的doExecute()方法,而这个方法是各个子类自己实现的,也就是说,不同的SparkPlan执行的doExecute()是不一样的。

通过上面的阶段,我们得到了一棵4层的树,不过其中WholeStageCodegenExec和InputAdapter是为Codegen优化生成的,这里就不讨论了,忽略这两个其实结果是一样的。也就是说这里只介绍ProjectExec和LocalTableScanExec两个SparkPlan的doExecute()方法。

先是ProjectExec这个SparkPlan,我们看看它的doExecute()代码。

case class ProjectExec(projectList: Seq[NamedExpression], child: SparkPlan)
extends UnaryExecNode with CodegenSupport {
......其他代码
protected override def doExecute(): RDD[InternalRow] = {
child.execute().mapPartitionsWithIndexInternal { (index, iter) =>
val project = UnsafeProjection.create(projectList, child.output,
subexpressionEliminationEnabled)
project.initialize(index)
iter.map(project)
}
}
......其他代码
}

可以看到它是先递归去调用child(也就是LocalTableScanExec)的doExecute()方法,还是得先去看看LocalTableScanExec生成什么东西呀。

case class LocalTableScanExec(
output: Seq[Attribute],
@transient rows: Seq[InternalRow]) extends LeafExecNode {
......其他代码 private lazy val rdd = sqlContext.sparkContext.parallelize(unsafeRows, numParallelism) protected override def doExecute(): RDD[InternalRow] = {
val numOutputRows = longMetric("numOutputRows")
rdd.map { r =>
numOutputRows += 1
r
}
} ......其他代码

可以看到最底层的rdd就是在这里实现的,LocalTableScanExec一开始就会生成一个lazy的rdd,在需要的时候返回。而在doExecute()方法中的numOutputRows可以理解为仅是一个测量值,暂时不用理会。总之这里我们就发现LocalTableScanExec的doExecute()其实就是返回一个parallelize生成的rdd。然后再回到ProjectExec去。

它调用child.execute().mapPartitionsWithIndexInternal {......},这里的mapPartitionsWithIndexInternal和rdd的mapPartitionsWithIndex是类似的,区别只在于mapPartitionsWithIndexInternal只会在内部模块使用,如果有童鞋不明白mapPartitionsWithIndex这个API,可以百度查查看。然后重点看mapPartitionsWithIndexInternal的内部逻辑。

child.execute().mapPartitionsWithIndexInternal { (index, iter) =>
val project = UnsafeProjection.create(projectList, child.output,
subexpressionEliminationEnabled)
project.initialize(index)
iter.map(project)
}

这里最后一行iter.map(project),其实还是scala的语法糖,实际大概是这样iter.map(i => project.apply(i))。就是调用project的apply方法,对每行数据处理。然后通过追踪,可以发现project的实例是InterpretedUnsafeProjection,我们看看它的apply方法。

class InterpretedUnsafeProjection(expressions: Array[Expression]) extends UnsafeProjection {
......其他代码
override def apply(row: InternalRow): UnsafeRow = {
// Put the expression results in the intermediate row.
var i = 0
while (i < numFields) {
values(i) = expressions(i).eval(row)
i += 1
} // Write the intermediate row to an unsafe row.
rowWriter.reset()
writer(intermediate)
rowWriter.getRow()
} ......其他代码

这里其实重点在最后三行,就是将结果写入到result row,再返回回去。当执行完毕的时候,就会得到最终的RDD[InternalRow],再剩下的,就交给spark core去处理了。

小结

OK,那到这里基本就把Spark整个流程给讲完了,回顾一下整个流程。

其实可以发现流程是挺简单的,很多其他SQL解析框架(比如calcite)也是类似的流程,只是在设计上在某些方面的取舍会有偏差。而后深入到代码的时候容易陷入一些细节中,当然这几篇也省略了很多细节,很多时候细节才是真正精髓的地方,以后有如果涉及到的时候再写文章讨论吧(/偷笑)。如果在开放过程中涉及到SQL解析这方面的开放,应该都会是在优化方面,也就是Optimization阶段增加或处理Rule,这块就需要对代数优化理论和代码有一些了解了。

限于本人水平,介绍spark sql的这几篇文章难免有疏漏和不足的地方,欢迎在评论区评论,先谢过了~~

以上~

Spark SQL源码解析(五)SparkPlan准备和执行阶段的更多相关文章

  1. Spark SQL源码解析(四)Optimization和Physical Planning阶段解析

    Spark SQL原理解析前言: Spark SQL源码剖析(一)SQL解析框架Catalyst流程概述 Spark SQL源码解析(二)Antlr4解析Sql并生成树 Spark SQL源码解析(三 ...

  2. Spark SQL源码解析(三)Analysis阶段分析

    Spark SQL原理解析前言: Spark SQL源码剖析(一)SQL解析框架Catalyst流程概述 Spark SQL源码解析(二)Antlr4解析Sql并生成树 Analysis阶段概述 首先 ...

  3. Spark SQL源码解析(二)Antlr4解析Sql并生成树

    Spark SQL原理解析前言: Spark SQL源码剖析(一)SQL解析框架Catalyst流程概述 这一次要开始真正介绍Spark解析SQL的流程,首先是从Sql Parse阶段开始,简单点说, ...

  4. 第十一篇:Spark SQL 源码分析之 External DataSource外部数据源

    上周Spark1.2刚发布,周末在家没事,把这个特性给了解一下,顺便分析下源码,看一看这个特性是如何设计及实现的. /** Spark SQL源码分析系列文章*/ (Ps: External Data ...

  5. 第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query

    /** Spark SQL源码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache在 ...

  6. 第九篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 cache table

    /** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效 ...

  7. 第七篇:Spark SQL 源码分析之Physical Plan 到 RDD的具体实现

    /** Spark SQL源码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源码分析之Physical Plan,本文将介绍Physical Plan的toRDD的具体实现细节: ...

  8. 第一篇:Spark SQL源码分析之核心流程

    /** Spark SQL源码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人 ...

  9. 【Spark SQL 源码分析系列文章】

    从决定写Spark SQL源码分析的文章,到现在一个月的时间里,陆陆续续差不多快完成了,这里也做一个整合和索引,方便大家阅读,这里给出阅读顺序 :) 第一篇 Spark SQL源码分析之核心流程 第二 ...

随机推荐

  1. 算法竞赛进阶指南--快速幂,求a^b mod p

    // 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b &am ...

  2. C语言编程入门题目--No.12

    题目:判断101-200之间有多少个素数,并输出所有素数. 1.程序分析:判断素数的方法:用一个数分别去除2到sqrt(这个数),如果能被整除, 则表明此数不是素数,反之是素数. 2.程序源代码: # ...

  3. POJ3614防晒霜 这个贪心有点东西(贪心+优先队列)

    这个题是说有C头牛去晒太阳,带了L瓶防晒霜,每瓶防晒霜都有一个SPF值(每瓶防晒霜都能解决一个最短路 ) 每头牛给出了他可以接受防晒霜的上限,和下限,每种防晒霜都给出了SPF值与数量. 从防晒霜的sp ...

  4. redis-py中的坑

    今天发现,使用redis-py从redis中获取的数据竟然是加密的. conn = redis.Redis(host='redis_serverip', port=6379, password='re ...

  5. Codeforces Round #639 (Div. 2)

    Codeforces Round #639 (Div. 2) (这场官方搞事,唉,just solve for fun...) A找规律 给定n*m个拼图块,每个拼图块三凸一凹,问能不能拼成 n * ...

  6. Linux(Ubuntu) MySQL数据库安装与卸载

    安装 修改远程访问 卸载 安装 首先检查系统中是否已经安装了MySQL sudo netstat -tap | grep mysql 没有显示已安装结果,则没有安装 如若已安装,可以选择删除.(删除方 ...

  7. 动态代理学习(二)JDK动态代理源码分析

    上篇文章我们学习了如何自己实现一个动态代理,这篇文章我们从源码角度来分析下JDK的动态代理 先看一个Demo: public class MyInvocationHandler implements ...

  8. 王颖奇 20171010129《面向对象程序设计(java)》第十一周学习总结

    实验十一   集合 实验时间 2018-11-8 1.实验目的与要求 (1) 掌握Vetor.Stack.Hashtable三个类的用途及常用API: (2) 了解java集合框架体系组成: (3)  ...

  9. Facebook 开源微光效果 Shimmer

    我的引言 晚上好,我是吴小龙同学,我的公众号「一分钟 GitHub」会推荐 GitHub 上好玩的项目,挖掘开源的价值,欢迎关注我. 今天要推荐的是 Facebook 开源的闪光效果:Shimmer, ...

  10. 一、Spring的控制反转(IOC)学习

    一.控制反转 1.什么是控制反转? 控制反转(Inversion of Control,缩写为IoC),是面向对象中的一种设计原则,可以用来减低计算机代码之间的耦合度.其中最常见的方式叫做依赖注入(D ...