已知有 x[0-(n-1)],但是不知道具体的值,题目给定的信息 只有 I P V,说明 Xp=V,或者 I P Q V,说明 Xp ^ Xq=v,然后要求回答每个询问,询问的是 某任意的序列值 Xp1^Xp2,,,,X^pk

这个题目用加权并查集是这么处理的:

1. f[]照样是代表父节点,照样进行路径压缩,把每个 V[i]=V[i]^V[f[i]],即节点存储的值实际是它与它父亲的异或的值。为什么要这样呢,因为异或首先满足交换律,而且异或同一个数偶数次,即相当于本身,那么这个题目的其中一个要求是探测冲突,则如果两个点同属一个集合,那么 他们的 Xp^Xq=Xp^Xf^Xq^Xf=v[p]^v[q],就是利用了异或偶数次等于本身的原理,在真正计算的时候,也是这样,只有父节点被异或了偶数次 才可以被消除,求得真正的值,只有其中有一个或者以上的父节点经过了奇数次的异或,说明根本就求不出来,输出 I don't know.

2.为了应对I P V 这种直接赋值的做法,人为添加一个超级父节点T,v[T]=0每次让它跟T来异或,这样就不用特殊处理了

3.每次合并的时候,T一定要是父节点,特判一下。find的时候,进行路径压缩,同时对加权进行合并,通过异或偶数等于本身的特性,将底下的节点顺利的转化为父节点的子节点。

4.注意一下 !运算的优先级高于^,为了这个WA了几次,以后涉及位运算的,多写括号,感觉不是第一次被优先级给坑了。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = +;
int f[N],v[N];
int vis[N],a[];
int T=N-;
void init(int n)
{
for (int i=;i<=n+;i++){
f[i]=i;
v[i]=;
vis[i]=;
}
f[T]=T;
v[T]=;
}
int findset(int x)
{
if (x!=f[x]){
int tmp=f[x];
f[x]=findset(f[x]);
v[x]^=v[tmp];//因为v[x]本身就包括了异或上一层父节点的值,此时与上一层再异或一次,就抵消了
}
return f[x];
}
bool uset(int p,int q,int val)
{
int r1=findset(p);
int r2=findset(q);
if (r1==r2){
if ((v[p]^v[q])!=val) return ;
else return ;
}
if (r1==T) swap(r1,r2);
f[r1]=r2;
v[r1]=v[p]^v[q]^val;//这里要注意,实际V[r1]=xr1^xr2,而Vp和Vq包含这两项,并且用val把他们自身给抵消了,就剩下那两项了,异或确实是很奇妙
return ;
}
int main()
{
int n,Q,p,q,val,kase=;
char ch[];
char s[];
while(scanf("%d%d",&n,&Q))
{
if (!(n+Q)) break;
init(n);
printf("Case %d:\n",++kase);
bool err=;
int facts=;
for (int i=;i<=Q;i++){
scanf("%s",ch);
if (ch[]=='I'){
facts++;
gets(s);
if (sscanf(s,"%d%d%d",&p,&q,&val)==) {
val=q;q=T;
}
//cout<<p<<" "<<q<<" "<<val<<endl;
if (err) continue;
if (!uset(p,q,val)){
printf("The first %d facts are conflicting.\n",facts);
err=;
}
}
else {
int k,ans=;
scanf("%d",&k);
for (int i=;i<=k;i++){
scanf("%d",&a[i]);
if(err) continue;
int r=findset(a[i]);
ans^=v[a[i]];
a[i]=r;
vis[r]^=;
}
if (err) continue;
bool flag=;
for (int i=;i<=k;i++){
if (vis[a[i]]){//这里判断是否是奇数次
if (a[i]!=T){//如果奇数次是超级父节点,没关系,因为他的值已知
flag=;
}
vis[a[i]]=;
}
}
if (flag) printf("%d\n",ans);
else printf("I don't know.\n");
}
}
puts("");
}
return ;
}

UVALive 4487 Exclusive-OR 加权并查集神题的更多相关文章

  1. hdu 3047 Zjnu Stadium(加权并查集)2009 Multi-University Training Contest 14

    题意: 有一个运动场,运动场的坐席是环形的,有1~300共300列座位,每列按有无限个座位计算T_T. 输入: 有多组输入样例,每组样例首行包含两个正整数n, m.分别表示共有n个人,m次操作. 接下 ...

  2. hdu 3635 Dragon Balls(加权并查集)2010 ACM-ICPC Multi-University Training Contest(19)

    这道题说,在很久很久以前,有一个故事.故事的名字叫龙珠.后来,龙珠不知道出了什么问题,从7个变成了n个. 在悟空所在的国家里有n个城市,每个城市有1个龙珠,第i个城市有第i个龙珠. 然后,每经过一段时 ...

  3. HDU 3407.Zjnu Stadium 加权并查集

    Zjnu Stadium Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. A Bug's Life(加权并查集)

    Description Background  Professor Hopper is researching the sexual behavior of a rare species of bug ...

  5. A Bug's Life(加权并查集)

    Description Background Professor Hopper is researching the sexual behavior of a rare species of bugs ...

  6. P1196 银河英雄传说(加权并查集)

    P1196 银河英雄传说 题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在 ...

  7. Zjnu Stadium(加权并查集)

    Zjnu Stadium Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  8. 洛谷 P2024 [NOI2001]食物链(种类并查集,加权并查集)

    传送门 解题思路 加权并查集: 什么是加权并查集? 就是记录着每个节点到它的父亲的信息(权值等). 难点:在路径压缩和合并节点时把本节点到父亲的权值转化为到根节点的权值 怎么转化呢? 每道题都不一样Q ...

  9. 牛客网-Beauty of Trees 【加权并查集】

    锟斤拷锟接o拷https://www.nowcoder.com/acm/contest/119/A锟斤拷源锟斤拷牛锟斤拷锟斤拷 锟斤拷目锟斤拷锟斤拷 It锟斤拷s universally acknow ...

随机推荐

  1. DotNetSpeech----文本转wave语音文件

    wav操作引入dll(DotNetSpeech.dll),引入以后需要选中项目中引入的dll,鼠标右键,选择属性,把“嵌入互操作类型”设置为False.不然会提示无法嵌入互操作类型"Spee ...

  2. 【Unity】稍微说一下关于各种坐标的转换。比如WorldToScreenPoint

    之前写了一篇关于在物体头顶上显示名字的随笔. 估计难懂的点就在各种坐标的转换. 这里详细(就我这水平,怎么可能详细~~~)解说一下.额............. 用另一种方式举个栗子吧. 还是实现在物 ...

  3. vue 线上,本地,不同变量配置

    线上的接口和本地的接口不一样,每次打包的时候要手动更改很麻烦.自动让他配置 1.修改package.json  --mode line 传参数line给配置项,编译buildline的时候,就能把li ...

  4. 剑指offer 把字符串转化为整数

    题目描述 将一个字符串转换成一个整数,要求不能使用字符串转换整数的库函数. 数值为0或者字符串不是一个合法的数值则返回0 输入描述: 输入一个字符串,包括数字字母符号,可以为空 输出描述: 如果是合法 ...

  5. [Luogu][P2458] [SDOI2006]保安站岗

    题目链接 看起来似乎跟最小点覆盖有点像.但区别在于: 最小点覆盖要求所有边在其中,而本题要求所有点在其中. 即:一个点不选时,它的儿子不一定需要全选. 画图理解: 对于这样一幅图,本题中可以这样选择: ...

  6. 微信小程序—显示当前时间

    问题:  在页面上显示当前时间(日期) 方法: 1.在util.js (创建项目自动生成)中: // util.js const formatTime = date => { const yea ...

  7. http error 502.5

    原文地址:https://www.cnblogs.com/loui/p/7826073.html 在部署网站时遇到的各种问题,通过检索找到了解决方案,感谢!!记录一下以免忘记.. 解决方法:把IIS的 ...

  8. poj 1854 Evil Straw Warts Live 变成回文要几次

    Evil Straw Warts Live Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1799   Accepted: ...

  9. chatdet用法

    1. 下载chardet 2. 在命令提示符里转到chardet的存放目录,执行python setup.py install 3. 在代码中用 import chardet 导入模块 4. 用法:c ...

  10. 小程序封装API

    一般我们https请求都是通过wx.request来请求,但是这种请求如果多了,页面会混乱不说,还不好管理,因此我将请求单独拎出去,方便管理,也方便后期维护. // api.js const API_ ...