无监督LDA、PCA、k-means三种方法之间的的联系及推导
   \(LDA\)是一种比较常见的有监督分类方法,常用于降维和分类任务中;而\(PCA\)是一种无监督降维技术;\(k\)-means则是一种在聚类任务中应用非常广泛的数据预处理方法。
   本文的主要写作出发点是:探讨无监督情况下,\(LDA\)的类内散度矩阵和类间散度矩阵与\(PCA\)和\(k\)-means之间的联系。
1.常规有监督\(LDA\)的基本原理:
(1) \(LDA\)的目标函数:
   关于\(LDA\)的产生及理论推导,大家参考:“线性判别分析LDA原理总结”,这篇文章已经讲解地非常详细,我在这里不再赘述。本文涉及到的\(LDA\)皆是多分类\(LDA\), 以矩阵形式书写。
   首先\(LDA\)的基本思想是:给定原始数据\(X\)(假设已经去中心化),求解一个正交投影子空间\(W\),使得样本经过子空间投影后,可以使类内散度矩阵\(S_w\)最小,类间散度矩阵\(S_b\)最大。即优化以下目标函数:
\left\{\begin{array}{l}
\min_{W^{T} W=I} \operatorname{Tr}\left(W^{T} S_{w} W\right) \\
\max_{W^{T} W=I} \operatorname{Tr}\left(W^{T} S_{b} W\right).
\end{array}
\right.
\end{equation}
\]
而上式中的类内散度矩阵\(S_w\)和类间散度矩阵\(S_b\)又满足另一个条件:
{S}_w + {S}_b = {S}_t,
\end{equation}
\]
这里,\({S}_t\)指的使整体散度矩阵。本文的出发点就是说明类内散度矩阵\({S}_t\)与\(PCA\)之间的联系以及类间散度矩阵\({S}_w\)与\(k\)-means之间的关系。
(2) \(LDA\)为什么是有监督的
LDA之所以是有监督的,是因为在公式(1)中,计算类内散度矩阵\({S}_w\)和类间散度矩阵\({S}_b\)时,需要用到标签矩阵Y。
2.LDA的类内散度矩阵和\(PCA\)之间的关系
   关于PCA的具体推导过程,可以参考:"PCA的数学原理"
   LDA中的整体散度矩阵\({S}_t\)的计算可以表达为:
{S}_{t}={X X}^{T}=\sum_{i=1}^{n} x_{i} x_{i}^{T}。
\end{equation}
\]
这里可以明显的发现,\(LDA\)中的整体散度矩阵\({S}_t\)和\(PCA\)是等价的。
3. \(LDA\)和\(k\)-means之间的联系
首先,我们做出一个假设,在无监督情况下,标签矩阵\(Y\)由一个已知变量转化为一个待求变量。此时,类内散度矩阵\({S}_w\)和类间散度矩阵\({S}_b\)可以做如下推导:
\left\{\begin{array}{l}
{S}_{t}={X} {X}^{T} \\
{S}_{b}={X} {Y}\left({Y}^{T} {Y}\right)^{-1} {Y}^{T} {X}^{T} \\
{S}_{w}={S}_{t}-{S}_{b}={X} \left({I}-{Y}\left({Y}^{T} {Y}\right)^{-1} {Y}^{T}\right) {X}^{T}
\end{array}
\right.
\end{equation}
\]
这里\({I}\)是同维度的单位矩阵。下面,我们进行类内散度矩阵\(\mathbf{S}_w\)的推导:
\begin{aligned}
\mathbf{S}_{w} &=\mathbf{X} \left(\mathbf{I}-\mathbf{Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T}\right) \mathbf{X}^{T}\\
&={X X}^{T}-\mathbf{X Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T} \mathbf{X}^{T}\\
\end{aligned}
\end{equation}
\]
对上式进行拆分:
\begin{aligned}
&\mathbf{X X}^{T}-\mathbf{X Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T} \mathbf{X}^{T}\\
=&\mathbf{X X}^{T}-2 \mathbf{X Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T} \mathbf{X}^{T}+\mathbf{X Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T} \mathbf{Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T} X^{T} \\
=&\left(\mathbf{X}-\mathbf{X Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T}\right)\left(\mathbf{X-XY}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T}\right)^{T} \\
=& trace\left(\mathbf{X}-\mathbf{X Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T}\right)
\end{aligned}
\end{equation}
\]
   上述公式中的一个小技巧:\((\mathbf{YY})^{-1}\)是一个对角矩阵,对角元素是,类别数分之一(\(\frac{1}{c}\))。
   另外需要注意的一点是:
\left\{
\begin{aligned}
&\mathbf{Y}^{T} \mathbf{Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1}=I\\
&\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1 / 2} \mathbf{Y}^{T} \mathbf{Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1 / 2}=I\\
&\mathbf{Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T} \neq I
\end{aligned}
\right..
\end{equation}
\]
故此,无监督情况下,\(LDA\)的类内散度矩阵和\(k\)-means其实是等价的,并且可以写成迹范数的形式。
无监督LDA、PCA、k-means三种方法之间的的联系及推导的更多相关文章
- 数组k平移三种方法(java)
		
上代码,本文用了三种方法实现,时间复杂度不一样,空间复杂度都是o(1): public class ArrayKMove { /** * 问题:数组的向左k平移,k小于数组长度 * @param ar ...
 - Linux启动新进程的三种方法
		
程序中,我们有时需要启动一个新的进程,来完成其他的工作.下面介绍了三种实现方法,以及这三种方法之间的区别. 1.system函数-调用shell进程,开启新进程system函数,是通过启动shell进 ...
 - 三种方法实现PCA算法(Python)
		
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目 ...
 - Python使用三种方法实现PCA算法[转]
		
主成分分析(PCA) vs 多元判别式分析(MDA) PCA和MDA都是线性变换的方法,二者关系密切.在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣. 一句 ...
 - C#中??和?分别是什么意思?  在ASP.NET开发中一些单词的标准缩写  C#SESSION丢失问题的解决办法  在C#中INTERFACE与ABSTRACT CLASS的区别  SQL命令语句小技巧  JQUERY判断CHECKBOX是否选中三种方法  JS中!=、==、!==、===的用法和区别  在对象比较中,对象相等和对象一致分别指的是什么?
		
C#中??和?分别是什么意思? 在C#中??和?分别是什么意思? 1. 可空类型修饰符(?):引用类型可以使用空引用表示一个不存在的值,而值类型通常不能表示为空.例如:string str=null; ...
 - AHS日志收集的三种方法
		
硬件环境:(描述实验机器初始环境) 型号 DL380 G8 序列号 配置扩展 备注 软件环境: □ 操作系统:无 连接方式: □ 无 实验步骤: 1在ILO里点information点 ...
 - IOS_视图实现圆角效果的三种方法及比较
		
通过代码,至少有三种方法可以为视图加上圆角效果.附例子:https://github.com/weipin/RoundedCorner 方法一.layer.cornerRadius 第一种方法最简单, ...
 - CSS实现导航条Tab的三种方法
		
前面的话 导航条Tab在页面中非常常见,本文说详细介绍CSS实现导航条Tab的三种方法 布局 根据上图所示,先规定几个定义,上图的模块整体叫做导航,由导航标题和导航内容组成.要实现上图所示的布 ...
 - CSS实现导航条Tab切换的三种方法
		
前面的话 导航条Tab在页面中非常常见,本文说详细介绍CSS实现导航条Tab的三种方法 布局 根据上图所示,先规定几个定义,上图的模块整体叫做导航,由导航标题和导航内容组成.要实现上图所示的布 ...
 
随机推荐
- webpack4多页应用HTML按需添加入口依赖chunk【html-webpack-plugin & html-inline-entry-chunk-plugin】
			
在webpack4中使用splitChunkPlugin时,根据需要将公共代码拆分为多个依赖后,需要在创建htmlWebpackPlugin时候按需引入对应入口文件依赖的chunk.但是html-we ...
 - 「雕爷学编程」Arduino动手做(19)—震动报警模块
			
37款传感器与模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的.鉴于本人手头积累了一些传感器和模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里 ...
 - 4.4MSSQLServer常用版本介绍
			
以SQL Server 2008版本为例: -SQL Server 2008 Datacenter(x86 x64 ia64)数据中心版,最强大的版本,要付费的 -SQL Server 2008 En ...
 - Linux文件列表查询ll和ls区别
			
ll ll查询文件列表,查询结果为当前目录下文件和文件夹的详细信息,包括权限.根目录.用户.创建时间等. ls ls查询出的查询结果只显示当前目录下文件夹和文件名称
 - uiautomator2通过wifi操作手机
			
参考来源:https://www.cnblogs.com/c-x-a/p/11176066.html,有部分不适合当前版本的做了修改 1.手机通过USB连接电脑,先开启远程adb模式,操作如下(可以指 ...
 - ASP.NET Core Blazor Webassembly 之 组件
			
关于组件 现在前端几大轮子全面组件化.组件让我们可以对常用的功能进行封装,以便复用.组件这东西对于搞.NET的同学其实并不陌生,以前ASP.NET WebForm的用户控件其实也是一种组件.它封装ht ...
 - 【Mathtype】安装Mathtype后,word无法粘贴的问题
			
Win10安装mathtype后,word工具栏中自动添加mathtype的选项(mathtype为了使用户更加方便使用,故自动添加),但是却导致word无法粘贴.如何解决该问题? [方案1]官网描述 ...
 - Hadoop 伪分布模式安装
			
( 温馨提示:图片中有id有姓名,不要盗用哦,可参考流程,有问题评论区留言哦 ) 一.任务目标 1.了解Hadoop的3种运行模式 2.熟练掌握Hadoop伪分布模式安装流程 3.培养独立完成Hado ...
 - 07 . Nginx常用模块及案例
			
访问控制 用户访问控制 ngx_http_auth_basic_module 有时我们会有这么一种需求,就是你的网站并不想提供一个公共的访问或者某些页面不希望公开,我们希望的是某些特定的客户端可以访问 ...
 - uni-app之uni.showToast()image路径问题
			
uni-app的API中,showToast的icon值只有success,loading,none三种显示,失败没有图标.如果失败时需要显示图标,就要用到自定义图标 image 了. uni.sho ...