Choose the best route

Problem Description

One day , Kiki wants to visit one of her friends. As she is liable to carsickness , she wants to arrive at her friend’s home as soon as possible . Now give you a map of the city’s traffic route, and the stations which are near Kiki’s home so that she can take. You may suppose Kiki can change the bus at any station. Please find out the least time Kiki needs to spend. To make it easy, if the city have n bus stations ,the stations will been expressed as an integer 1,2,3…n.

Input

There are several test cases.
Each case begins with three integers n, m and s,(n<1000,m<20000,1=<s<=n) n stands for the number of bus stations in this city and m stands for the number of directed ways between bus stations .(Maybe there are several ways between two bus stations .) s stands for the bus station that near Kiki’s friend’s home.
Then follow m lines ,each line contains three integers p , q , t (0<t<=1000). means from station p to station q there is a way and it will costs t minutes .
Then a line with an integer w(0<w<n), means the number of stations Kiki can take at the beginning. Then follows w integers stands for these stations.
 

Output

The output contains one line for each data set : the least time Kiki needs to spend ,if it’s impossible to find such a route ,just output “-1”.
 
$Dijkstra$ 算法:以点为思考中心的最短路径算法。
图结构存储:邻接表
流程:1.初始化
 const int INF = 1e9;
bool hasFind[maxn];
for (int i = ;i<= n ;i++)
dist[i] = INF;
dist[sNode] = ;
memset(hasFind,,sizeof hasFind);
hasFind[sNode] = true;

具体流程为:

 for (int i =  ;i< n- ;i++){
int nId = - ;
for (int j = ;j< n ;j++){
if (!hasFind[j]){
if (nId == -)
nId = j;
else if (dist[j]<dist[nId])
nId = j;
}
}
hasFind[nId] = true;
for (int i = ;i< node[nId].size() ;i++){
int nextId = node[nId][i].nextId;
if (node[nId][i].dist + dist[nId]< dist[nextId]){
dist[nextId] = node[nId][i].dist + dist[nId];
que.push(nextId);
}
}
}

时间复杂度 节点个数 $N$,边个数 $M$ $O$($N\times N$)

举例 • 求所有节点到节点 1 的最短距离

1. 初始化
• 将源节点 1,放入已获取最短路径集合, 集合变为 {1}

• 未获取最短路径节点结合 {2,3,4,5}

• 根据节点 1 来更新所有节点距离源节点的距离 $dist$

2. 流程
(a) $step$ 1:

• 从未获取最短路径节点结合 {2,3,4,5} 中,选取距离源节点最 近的节点 3

• 将节点 3,放入已获取最短路径集合, 集合变为 {1,3}

• 根据节点 3 来更新所有节点距离源节点的距离 $dist$

(b) $step$ 2:

• 从未获取最短路径节点结合 {2,4,5} 中,选取距离源节点最 近的节点 2

• 将节点 2,放入已获取最短路径集合, 集合变为 {1,2,3}

• 根据节点 2 来更新所有节点距离源节点的距离 $dist$

(c) $step$ 3:

• 从未获取最短路径节点结合 {4,5} 中,选取距离源节点最近 的节点 4

• 将节点 4,放入已获取最短路径集合, 集合变为 {1,2,3,4}

• 根据节点 4 来更新所有节点距离源节点的距离 $dist$

(d) $step$ 4:

• 从未获取最短路径节点结合 {5} 中,选取距离源节点最近的 节点 5

• 将节点 5,放入已获取最短路径集合, 集合变为 {1,2,3,4,5}

• 根据节点 5 来更新所有节点距离源节点的距离 $dist$

(e) 终止条件,所有节点都放入到了已获取最短路径集合。

把所有部分合并在一起得到一段代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define Inf 0x3f3f3f3f using namespace std;
int map[][];
int vis[],dis[];
int n,m;//n个点,m条边
void Init ()
{
memset(map,Inf,sizeof(map));
for(int i=;i<=n;i++)
{
map[i][i]=;
}
}
void Getmap()
{
int u,v,w;
for(int t=;t<=m;t++)
{
scanf("%d%d%d",&u,&v,&w);
if(map[u][v]>w)
{
map[u][v]=w;
map[v][u]=w;
}
}
} void Dijkstra(int u)
{
memset(vis,,sizeof(vis));
for(int t=;t<=n;t++)
{
dis[t]=map[u][t];
}
vis[u]=;
for(int t=;t<n;t++)
{
int minn=Inf,temp;
for(int i=;i<=n;i++)
{
if(!vis[i]&&dis[i]<minn)
{
minn=dis[i];
temp=i;
}
}
vis[temp]=;
for(int i=;i<=n;i++)
{
if(map[temp][i]+dis[temp]<dis[i])
{
dis[i]=map[temp][i]+dis[temp];
}
}
}
} int main()
{ scanf("%d%d",&m,&n);
Init();
Getmap();
Dijkstra(n);
printf("%d\n",dis[]);
return ;
}

这道题的代码如下:

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <cstdlib>
using namespace std; const int INF=0x3f3f3f3f;
const int N=;
int mp[N][N];
int dis[N];
int vis[N];
int m;
int n;
int dijstra()
{
memset(dis,0x3f,sizeof(dis));
memset(vis,,sizeof(vis));
dis[]=;
for(int i=;i<=n;i++)
{
int k=;
int mini=INF;
for(int j=;j<=n;j++)
{
if(!vis[j]&&mini>dis[j])
mini=dis[k=j];
}
vis[k]=;
if(k==m) return dis[m];
for(int j=;j<=n;j++)
{
if(vis[j]||mp[k][j]==INF) continue;
dis[j]=min(dis[j],dis[k]+mp[k][j]);
}
}
return dis[m];
}
int main()
{
int s; //已修好的路有几条
while(~scanf("%d%d%d",&n,&s,&m)) //终点是m,最远的点是n
{
memset(mp,INF,sizeof(mp));
while(s--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(mp[a][b]>c)
mp[a][b]=c;
}
int d;
scanf("%d",&d);
while(d--)
{
int x;
scanf("%d",&x);
mp[][x]=;
}
int k=dijstra();
if(k==INF) printf("-1\n");
else printf("%d\n",dijstra());
}
return ;
}
 

最短路问题-- Dijkstra Choose the best route的更多相关文章

  1. hdu 2680 Choose the best route (dijkstra算法 最短路问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Time Limit: 2000/1000 MS ( ...

  2. hdu 2680 Choose the best route

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Description One day , Kiki ...

  3. HDU2680 Choose the best route 最短路 分类: ACM 2015-03-18 23:30 37人阅读 评论(0) 收藏

    Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  4. HDU2680 Choose the best route 2017-04-12 18:47 28人阅读 评论(0) 收藏

    Choose the best route Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Othe ...

  5. hdu-2680 Choose the best route(最短路)

    题目链接: Choose the best route Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K ( ...

  6. Choose the best route(最短路)dijk

    http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Time Limit: 2000/1000 MS (Java/ ...

  7. HDU 2680 Choose the best route(多起点单终点最短路问题)题解

    题意:小A要乘车到s车站,他有w个起始车站可选,问最短时间. 思路:用Floyd超时,Dijkstra遍历,但是也超时.仔细看看你会发现这道题目好像是多源点单终点问题,终点已经确定,那么我们可以直接转 ...

  8. Choose the best route HDU杭电2680【dijkstra算法 || SPFA】

    http://acm.hdu.edu.cn/showproblem.php?pid=2680 Problem Description One day , Kiki wants to visit one ...

  9. HDU 2680 Choose the best route 最短路问题

    题目描述:Kiki想去他的一个朋友家,他的朋友家包括所有的公交站点一共有n 个,一共有m条线路,线路都是单向的,然后Kiki可以在他附近的几个公交站乘车,求最短的路径长度是多少. 解题报告:这道题的特 ...

随机推荐

  1. css的艺术

    鲁先生曾经说过:"html和css都不能算一门语言..." html确实不能算一门语言,他只是二三十个英语单词而已,但是css不一样,css是==艺术== 骚操作 上图的12个图标 ...

  2. Scala 线性化规则和 super 操作

    如果一个类有多个父类,且父类的有相同的函数 f,在子类和父类中调用 super.f 都是按从右到左的调用函数的顺序. 这个规则名为:Linearization Rules 如下的代码 trait Ba ...

  3. https://blog.csdn.net/yyoinge/article/details/81557604

    https://blog.csdn.net/yyoinge/article/details/81557604 http://www.mamicode.com/info-detail-2346464.h ...

  4. TCP/IP 三次握手,四次断开

    TCP/IP 三次握手,四次断开 一.TCP报文格式                     TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷 本. 下面是TCP报文格式图: 图 ...

  5. Spring入门之四-------SpringIoC之其他知识点

    一.懒加载 public class Bean1 { public Bean1() { System.out.println(this.getClass().getSimpleName() + &qu ...

  6. 完全卸载(删除)mac下自带的php

    /private/etc sudo rm -rf php-fpm.conf.defaultphp.ini php.ini.default /usr/bin sudo rm -rf php php-co ...

  7. 电影网站的电影m3u8源址分享(存储于mysql数据库,可直接应用在电影网站上使用)

    说明: 1.包含一个films.sql文件,基于mysql5.6的数据表导出文件. 2.该sql文件里面包含一个mysql数据表films,内含35000部电影m3u8源地址. 3.films数据表包 ...

  8. Node.js 发送Email

    章节 Node.js 介绍 Node.js 入门 Node.js 模块 Node.js HTTP模块 Node.js 文件系统模块 Node.js URL模块 Node.js NPM Node.js ...

  9. Python 内置类型 dict, list,线程安全吗

    近段时间发现一个 Python 连接数据库的连接是线程不安全的,结果惹得我哪哪儿都怀疑变量的多线程是否安全的问题,今天终于找到了正确答案,那就是 Python 内置类型 dict,list ,tupl ...

  10. ES6中字符串的新增方法梳理

    1.String.fromCodePoint(); String,fromCodePoint()方法可以认为是对String.fromCharCode()方法的扩展,这两个方法的共同点在于都是用于Un ...