Choose the best route

Problem Description

One day , Kiki wants to visit one of her friends. As she is liable to carsickness , she wants to arrive at her friend’s home as soon as possible . Now give you a map of the city’s traffic route, and the stations which are near Kiki’s home so that she can take. You may suppose Kiki can change the bus at any station. Please find out the least time Kiki needs to spend. To make it easy, if the city have n bus stations ,the stations will been expressed as an integer 1,2,3…n.

Input

There are several test cases.
Each case begins with three integers n, m and s,(n<1000,m<20000,1=<s<=n) n stands for the number of bus stations in this city and m stands for the number of directed ways between bus stations .(Maybe there are several ways between two bus stations .) s stands for the bus station that near Kiki’s friend’s home.
Then follow m lines ,each line contains three integers p , q , t (0<t<=1000). means from station p to station q there is a way and it will costs t minutes .
Then a line with an integer w(0<w<n), means the number of stations Kiki can take at the beginning. Then follows w integers stands for these stations.
 

Output

The output contains one line for each data set : the least time Kiki needs to spend ,if it’s impossible to find such a route ,just output “-1”.
 
$Dijkstra$ 算法:以点为思考中心的最短路径算法。
图结构存储:邻接表
流程:1.初始化
 const int INF = 1e9;
bool hasFind[maxn];
for (int i = ;i<= n ;i++)
dist[i] = INF;
dist[sNode] = ;
memset(hasFind,,sizeof hasFind);
hasFind[sNode] = true;

具体流程为:

 for (int i =  ;i< n- ;i++){
int nId = - ;
for (int j = ;j< n ;j++){
if (!hasFind[j]){
if (nId == -)
nId = j;
else if (dist[j]<dist[nId])
nId = j;
}
}
hasFind[nId] = true;
for (int i = ;i< node[nId].size() ;i++){
int nextId = node[nId][i].nextId;
if (node[nId][i].dist + dist[nId]< dist[nextId]){
dist[nextId] = node[nId][i].dist + dist[nId];
que.push(nextId);
}
}
}

时间复杂度 节点个数 $N$,边个数 $M$ $O$($N\times N$)

举例 • 求所有节点到节点 1 的最短距离

1. 初始化
• 将源节点 1,放入已获取最短路径集合, 集合变为 {1}

• 未获取最短路径节点结合 {2,3,4,5}

• 根据节点 1 来更新所有节点距离源节点的距离 $dist$

2. 流程
(a) $step$ 1:

• 从未获取最短路径节点结合 {2,3,4,5} 中,选取距离源节点最 近的节点 3

• 将节点 3,放入已获取最短路径集合, 集合变为 {1,3}

• 根据节点 3 来更新所有节点距离源节点的距离 $dist$

(b) $step$ 2:

• 从未获取最短路径节点结合 {2,4,5} 中,选取距离源节点最 近的节点 2

• 将节点 2,放入已获取最短路径集合, 集合变为 {1,2,3}

• 根据节点 2 来更新所有节点距离源节点的距离 $dist$

(c) $step$ 3:

• 从未获取最短路径节点结合 {4,5} 中,选取距离源节点最近 的节点 4

• 将节点 4,放入已获取最短路径集合, 集合变为 {1,2,3,4}

• 根据节点 4 来更新所有节点距离源节点的距离 $dist$

(d) $step$ 4:

• 从未获取最短路径节点结合 {5} 中,选取距离源节点最近的 节点 5

• 将节点 5,放入已获取最短路径集合, 集合变为 {1,2,3,4,5}

• 根据节点 5 来更新所有节点距离源节点的距离 $dist$

(e) 终止条件,所有节点都放入到了已获取最短路径集合。

把所有部分合并在一起得到一段代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define Inf 0x3f3f3f3f using namespace std;
int map[][];
int vis[],dis[];
int n,m;//n个点,m条边
void Init ()
{
memset(map,Inf,sizeof(map));
for(int i=;i<=n;i++)
{
map[i][i]=;
}
}
void Getmap()
{
int u,v,w;
for(int t=;t<=m;t++)
{
scanf("%d%d%d",&u,&v,&w);
if(map[u][v]>w)
{
map[u][v]=w;
map[v][u]=w;
}
}
} void Dijkstra(int u)
{
memset(vis,,sizeof(vis));
for(int t=;t<=n;t++)
{
dis[t]=map[u][t];
}
vis[u]=;
for(int t=;t<n;t++)
{
int minn=Inf,temp;
for(int i=;i<=n;i++)
{
if(!vis[i]&&dis[i]<minn)
{
minn=dis[i];
temp=i;
}
}
vis[temp]=;
for(int i=;i<=n;i++)
{
if(map[temp][i]+dis[temp]<dis[i])
{
dis[i]=map[temp][i]+dis[temp];
}
}
}
} int main()
{ scanf("%d%d",&m,&n);
Init();
Getmap();
Dijkstra(n);
printf("%d\n",dis[]);
return ;
}

这道题的代码如下:

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <cstdlib>
using namespace std; const int INF=0x3f3f3f3f;
const int N=;
int mp[N][N];
int dis[N];
int vis[N];
int m;
int n;
int dijstra()
{
memset(dis,0x3f,sizeof(dis));
memset(vis,,sizeof(vis));
dis[]=;
for(int i=;i<=n;i++)
{
int k=;
int mini=INF;
for(int j=;j<=n;j++)
{
if(!vis[j]&&mini>dis[j])
mini=dis[k=j];
}
vis[k]=;
if(k==m) return dis[m];
for(int j=;j<=n;j++)
{
if(vis[j]||mp[k][j]==INF) continue;
dis[j]=min(dis[j],dis[k]+mp[k][j]);
}
}
return dis[m];
}
int main()
{
int s; //已修好的路有几条
while(~scanf("%d%d%d",&n,&s,&m)) //终点是m,最远的点是n
{
memset(mp,INF,sizeof(mp));
while(s--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(mp[a][b]>c)
mp[a][b]=c;
}
int d;
scanf("%d",&d);
while(d--)
{
int x;
scanf("%d",&x);
mp[][x]=;
}
int k=dijstra();
if(k==INF) printf("-1\n");
else printf("%d\n",dijstra());
}
return ;
}
 

最短路问题-- Dijkstra Choose the best route的更多相关文章

  1. hdu 2680 Choose the best route (dijkstra算法 最短路问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Time Limit: 2000/1000 MS ( ...

  2. hdu 2680 Choose the best route

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Description One day , Kiki ...

  3. HDU2680 Choose the best route 最短路 分类: ACM 2015-03-18 23:30 37人阅读 评论(0) 收藏

    Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  4. HDU2680 Choose the best route 2017-04-12 18:47 28人阅读 评论(0) 收藏

    Choose the best route Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Othe ...

  5. hdu-2680 Choose the best route(最短路)

    题目链接: Choose the best route Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K ( ...

  6. Choose the best route(最短路)dijk

    http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Time Limit: 2000/1000 MS (Java/ ...

  7. HDU 2680 Choose the best route(多起点单终点最短路问题)题解

    题意:小A要乘车到s车站,他有w个起始车站可选,问最短时间. 思路:用Floyd超时,Dijkstra遍历,但是也超时.仔细看看你会发现这道题目好像是多源点单终点问题,终点已经确定,那么我们可以直接转 ...

  8. Choose the best route HDU杭电2680【dijkstra算法 || SPFA】

    http://acm.hdu.edu.cn/showproblem.php?pid=2680 Problem Description One day , Kiki wants to visit one ...

  9. HDU 2680 Choose the best route 最短路问题

    题目描述:Kiki想去他的一个朋友家,他的朋友家包括所有的公交站点一共有n 个,一共有m条线路,线路都是单向的,然后Kiki可以在他附近的几个公交站乘车,求最短的路径长度是多少. 解题报告:这道题的特 ...

随机推荐

  1. 使用 json 模块,使json数据格式与Python字典dict数据格式互相转换,获取数据更加方便

    一.定义 JSON 是一种数据格式 使用 javaScript (Java 死鬼破特)对象表示法 二.特点 1.JSON 与 XML格式数据的区别 ====== 两种格式的数据,都是跨语言,跨平台 c ...

  2. springmv返回JSON数据格式

    1.先导入依赖 <!-- springmvc使用@responseBody start--> <dependency> <groupId>com.fasterxml ...

  3. 使用Python绘制漫步图

    代码如下: import matplotlib.pyplot as plt from random import choice class RandomWalk(): def __init__(sel ...

  4. POJ1723 SOLDIERS 兄弟连

    SOLDIERS 有一个性质:在一个长为n的序列a中找一个数 \(a_k\) 使得 \(\sum\limits_{i=1}^n abs(a_i-a_k)\) 最小,则 \(a_k\) 是a的中位数. ...

  5. POJ3295 Tautology重言式

    Tautology 思路很简单,对于p.q.r.s.t暴力枚举是0还是1,判断即可.判断时像写表达式求值那样用栈.为了方便可以从后往前,因为最后一个肯定不是运算.那几个奇奇怪怪的函数可以找规律然后转为 ...

  6. 又一个无效的列类型错误Error setting null for parameter #7 with JdbcType NULL . Try setting a different JdbcType for this parameter or a different jdbcTypeForNull configuration property. Cause: java.sql.SQLExcept

    在更新数据时候出现的错误 更新代码如下: <update id="modify" parameterType="Standard"> update ...

  7. C++编程学习(十)引用

    引用变量是一个别名,也就是说,它是某个已存在变量的另一个名字.一旦把引用初始化为某个变量,就可以使用该引用名称或变量名称来指向变量. 注意以下几点与指针的区别: 不存在空引用.引用必须连接到一块合法的 ...

  8. Java8集合框架——LinkedHashSet源码分析

    本文的目录结构如下: 一.LinkedHashSet 的 Javadoc 文档注释和简要说明 二.LinkedHashSet 的内部实现:构造函数 三.LinkedHashSet 的 add 操作和 ...

  9. Thread start0 启动分析 一图看懂

    参考文章: https://segmentfault.com/a/1190000017255007 https://segmentfault.com/a/1190000020194154 1.线程启动 ...

  10. 167-PHP 文本分割函数str_split(二)

    <?php $str='PHP is a very good programming language'; //定义一个字符串 $arr=explode(' ',$str,-3); //使用空格 ...