题目描述

某一天\(WJMZBMR\)在打\(osu\)~~~但是他太弱逼了,有些地方完全靠运气\(QaQ\)

我们来简化一下这个游戏的规则

有\(n\)次点击要做,成功了就是\(o\),失败了就是\(x\),分数是按\(comb\)计算的,连续\(a\)个\(comb\)就有\(a\times a\)分,\(comb\)就是极大的连续\(o\)。比如\(ooxxxxooooxxx\),分数就是\(2\times 2+4 \times 4=4+16=20\)。

\(Sevenkplus\)闲的慌就看他打了一盘,有些地方跟运气无关要么是\(o\)要么是\(x\),有些地方\(o\)或者\(x\)各有\(50\%\)的可能性,用\(?\)号来表示。比如\(oo?xx\)就是一个可能的输入。

那么\(WJMZBMR\)这场\(osu\)的期望得分是多少呢?比如\(oo?xx\)的话,\(?\)是\(o\)的话就是\(oooxx >= 9\),是\(x\)的话就是\(ooxxx >= 4\) 期望自然就是\({(4+9)\over2}=6.5\)了

输入格式

第一行一个整数\(n\),表示点击的个数

接下来一个字符串,每个字符都是\(ox?\)中的一个

输出格式

一行一个浮点数表示答案

四舍五入到小数点后\(4\)位

如果害怕精度跪建议用\(long double\)或者\(extended\)

样例输入

4

????

样例输出

4.1250

数据范围与提示

\(n<=300000\)

\(osu\)很好玩的哦

\(WJMZBMR\)技术还行(雾),\(x\)基本上很少呢

分析

这个题和\(OSU!\)其实差别不大,也就是每个位置都有两种情况,然后就可以开始分析状态转移方程了:

首先利用两个数组\(f[i]\)和\(g[i]\),一个代表前\(i\)总得分,另一个代表前\(i\)总长度。

总长度这个当然很好进行状态转移,首先是当这一位是\(o\),那么就可以直接\(g[i]=g[i-1]+1\)。其次是这一位成为了\(x\),那么\(g[i]\)就置为\(0\)。第三种就是\(?\)的情况,因为\(o\)和\(x\)各为\(50\%\)的概率,所以\(g[i]=0.5\times(g[i-1]+1)+0\times 0.5\),到最后\(g[i]\)的状态转移方程就是\(g[i] ={ {g[i-1]+1}\over2}\)。

其次就是期望也就是得分的状态转移的方程了:

假如这一位是\(o\)的话,那么\(f[i]\)就是相当与上一位为\(x\),这一位为\(x+1\),那么变化量也就是\(2x+1\),所以状态转移方程就是

\[f[i]=f[i−1]+2\times g[i−1]+1
\]

\[g[i]=g[i-1]+1
\]

假如这一位是\(x\)的话,那么得分也就是不变了,只需要把\(g[i]\)改成\(0\)即可,状态转移方程就是

\[f[i]=f[i−1],g[i]=0
\]

第三种就是\(?\)的情况,因为每种情况都是\(0.5\)的概率,所以状态转移方程就很好想了,就是

\[f[i]=0.5\times (f[i−1]+2\times [i−1]+1)+0.5\times f[i−1]
\]

\[g[i]=0.5\times g[i−1]+1)+0.5\times 0
\]

按这三个进行状态转移就行了,下边是代码。

代码

#include<bits/stdc++.h>
const int maxn = 3e5+10;
int n;
double f[maxn];
double g[maxn];
char ch[maxn]; int main(){
scanf("%d ",&n);
scanf("%s",ch+1);
for(int i=1;i<=n;i++){
if(ch[i]=='o'){
f[i]=f[i-1]+2*g[i-1]+1;
g[i]=g[i-1]+1;
}
else if(ch[i]=='x'){
f[i]=f[i-1];
g[i]=0;
}
else{
g[i]=(g[i-1]+1)/2.0;
f[i]=0.5*f[i-1]+0.5*(f[i-1]+2*g[i-1]+1);
}
}
printf("%.4lf\n",f[n]);
return 0;
}

Easy [还是概率DP思想……]的更多相关文章

  1. Codeforces Round #388 (Div. 2) 749E(巧妙的概率dp思想)

    题目大意 给定一个1到n的排列,然后随机选取一个区间,让这个区间内的数随机改变顺序,问这样的一次操作后,该排列的逆序数的期望是多少 首先,一个随机的长度为len的排列的逆序数是(len)*(len-1 ...

  2. POJ2151-Check the difficulty of problems(概率DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4512   ...

  3. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  4. [转]概率DP总结 by kuangbin

    概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...

  5. 动态规划——概率dp

    所谓概率dp,用动态规划的思想找到一个事件中可能发生的所有情况,然后找到符合要求的那些情况数,除以总数便可以得到符合要求的事件发生的概率.其核心思想还是通过dp来得到事件发生的所有情况,很类似在背包专 ...

  6. POJ2151Check the difficulty of problems 概率DP

    概率DP,还是有点恶心的哈,这道题目真是绕,问你T个队伍.m个题目.每一个队伍做出哪道题的概率都给了.冠军队伍至少也解除n道题目,全部队伍都要出题,问你概率为多少? 一開始感觉是个二维的,然后推啊推啊 ...

  7. 【POJ】2151:Check the difficulty of problems【概率DP】

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8903   ...

  8. [NOIP2016 D1T3]换教室 【floyd+概率dp】

    题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq i \leq n1≤ ...

  9. hdu 4576(简单概率dp | 矩阵优化)

    艰难的一道题,体现出菜菜的我... 首先,先吐槽下. 这题到底出题人是怎么想的,用普通概率dp水过??? 那为什么我概率dp写的稍微烂点就一直tle?  感觉很不公平.大家算法都一致,因为我程序没有那 ...

随机推荐

  1. CPU亲和度

    CPU亲和度(CPU Affinity),就是将一个进程或者线程强制绑定在CPU的某一个core上运行. 参考:https://www.cnblogs.com/zhangxuan/p/6427533. ...

  2. Java实现 LeetCode 646 最长数对链(暴力)

    646. 最长数对链 给出 n 个数对. 在每一个数对中,第一个数字总是比第二个数字小. 现在,我们定义一种跟随关系,当且仅当 b < c 时,数对(c, d) 才可以跟在 (a, b) 后面. ...

  3. Java实现 LeetCode 436 寻找右区间

    436. 寻找右区间 给定一组区间,对于每一个区间 i,检查是否存在一个区间 j,它的起始点大于或等于区间 i 的终点,这可以称为 j 在 i 的"右侧". 对于任何区间,你需要存 ...

  4. 第三届蓝桥杯C++B组国(决)赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.星期几 1949年的国庆节(10月1日)是星期六. 今年(2012)的国庆节是星期一. 那么,从建国到现在,有几次国庆节正好是星期日呢 ...

  5. 第六届蓝桥杯JavaC组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.隔行变色 隔行变色 Excel表的格子很多,为了避免把某行的数据和相邻行混淆,可以采用隔行变色的样式. 小明设计的样式为:第1行蓝色, ...

  6. linux性能监控工具nmon生成HTML报告-EasyNmon

    一.关于easyNmon说明 为了方便多场景批量性能测试,用golang写了个监控程序,可以通过get url方式启动和停止nmon服务,非常适合配合Loadrunner性能测试框架和jmeter使用 ...

  7. iOS -实现imageView中的button响应点击事件的方法

    <pre name="code" class="cpp" style="font-size: 13px;">/** imagev ...

  8. Android中Widget开发步骤

    一.创建一个类,继承自 AppWidgetProvider 生命周期介绍: onEnabled():创建第一个widget时调用 onDisabled():删除最后一个widget时调用 二.在清单文 ...

  9. 扩展.Django-权限系统

    目录 Django权限系统auth User 新建用户 认证用户 修改密码 登录 退出登录 只允许登录的用户访问 Group Permission 检查用户权限 管理用户权限 自定义权限 Django ...

  10. Java I/O模型及其底层原理

    Java I/O是Java基础之一,在面试中也比较常见,在这里我们尝试通过这篇文章阐述Java I/O的基础概念,帮助大家更好的理解Java I/O. 在刚开始学习Java I/O时,我很迷惑,因为网 ...