题意:对一根长为l的木棒进行切割,给出n个切割点,每次切割的价值,等于需要切割的木头长度。

一开始理解错了,认为切割点时根据当前木条的左端点往右推算。

实际上,左端点始终是不变的一直是0,右端点一直是l,切割点就是在0 ~ l 之间的点,而切割时的价值就是切割这个点的时候当前木条的长度。

状态转移方程:dp[i][j] = min(dp[i][j],dp[i][k] + dp[k + 1][j] + cut[j] - cut[i]);

思路就是朝着子区间最优的情况靠拢,然后再求全局最优,由于子结构是包含在父结构中,所以用递归写的代码比较简单易懂。

博主 也参考了网上的代码,也有用数组的写法,但是数组写法博主也有还没弄懂的地方。

递归代码:

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<iostream>
#include<map>
#include<cmath>
#include<queue>
#include<stack>
using namespace std;
const int inf = 0x3f3f3f3f;
int l,n;
int cut[];
int dp[][]; int DFS(int i, int j){
if(i - j <= ) return ;// 如果不需要切割,那么需要的价值就是0
if(dp[i][j] < inf) return dp[i][j];// 情况不能再分,则返回dp[i][j]的值
for(int k = i + ; k < j ; k++)
dp[i][j] = min(dp[i][j],DFS(i,k) + DFS(k,j) + cut[j] - cut[i]);// 对于每一个子情况用DFS进行搜索,来获取最优情况。
return dp[i][j];// 这里的dp[i][j] 就是最优解了
}
int main(){
while(~scanf("%d",&l) && l != ){
memset(dp,inf,sizeof(dp));
scanf("%d",&n);
for(int i = ; i <= n ; i++){
scanf("%d",&cut[i]);
}
cut[] = ;
cut[n + ] = l;
int ans = DFS(,n+);
printf("The minimum cutting is %d.\n",ans);
}
return ;
}

递归代码

数组代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<iostream>
#include<map>
#include<cmath>
#include<queue>
#include<stack>
using namespace std;
const int inf = 0x3f3f3f3f;
int l,n;
int cut[];
int dp[][]; int main(){
while(~scanf("%d",&l) && l != ){
memset(dp,inf,sizeof(dp));
scanf("%d",&n);
for(int i = ; i <= n ; i++){
scanf("%d",&cut[i]);
}
cut[] = ;
cut[n + ] = l;
for(int i = ; i <= n + ; i++) dp[i][i] = ;
for(int i = n + ; i >= ; i--){// 这里从n+1到0进行循环,可以先把子结构的最优解算好,在应用到父结构里面。
for(int j = i ; j <= n + ; j++){
for(int k = i ; k <= j ; k++){
dp[i][j] = min(dp[i][j],dp[i][k] + dp[k + ][j] + cut[j] - cut[i - ]);//博主还是不太明白为什么这里的要减去cut[i - 1]而不是cut[i].
}
}
}
// int ans = DFS(0,n+1);
int ans = dp[][n + ];而且这里输出的是dp[][n + ]而不是dp[][n +]
printf("The minimum cutting is %d.\n",ans);
}
return ;
}

数组代码

一个从很久以前就开始做的梦。

Cutting Sticks UVA - 10003(DP 仍有不明白的地方)的更多相关文章

  1. Cutting Sticks UVA - 10003

    题文: 见:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...

  2. uva 10003 Cutting Sticks 【区间dp】

    题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...

  3. UVa 10003 - Cutting Sticks(区间DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. UVA 10003 Cutting Sticks 切木棍 dp

    题意:把一根木棍按给定的n个点切下去,每次切的花费为切的那段木棍的长度,求最小花费. 这题出在dp入门这边,但是我看完题后有强烈的既是感,这不是以前做过的石子合并的题目变形吗? 题目其实就是把n+1根 ...

  5. uva 10003 Cutting Sticks (区间dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接:  打开 题目大意 一根长为l的木棍,上面有n个"切点",每个点的位置为c[i] 要按照一 ...

  6. UVA 10003 Cutting Sticks 区间DP+记忆化搜索

    UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...

  7. uva 10003 Cutting Sticks(区间DP)

    题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...

  8. UVA 10003 Cutting Sticks(区间dp)

    Description    Cutting Sticks  You have to cut a wood stick into pieces. The most affordable company ...

  9. 10003 Cutting Sticks(区间dp)

      Cutting Sticks  You have to cut a wood stick into pieces. The most affordable company, The Analog ...

随机推荐

  1. 042-PHP使用闭包函数递归无限级分类

    <?php //使用闭包函数递归无限级分类 function demo($array){ # 用于存储递归后的队列 $data = []; # 递归函数 $func = function (&a ...

  2. 箭头函数this

    箭头函数的this值是由包含它的函数(非箭头函数)来决定的,与包含的函数的this指向一致,如果包裹它的不是函数(直到找到最外层)则this指向全局对象 并且箭头函数的this是固定的,由定义它时所在 ...

  3. spring学习第7天(PCD以及切点表达式)

    1.PCD(PointCutDesigner) spring的aop只针对方法进行aop代理,而apectj联盟的aop比之更加强大,还可以针对字段等进行切面编程 1.1:execution,用的最多 ...

  4. 《百面机器学习算法工程师带你去面试》高清PDF及epub+《美团机器学习实践》PDF及思维导图

    http://blog.sina.com.cn/s/blog_ecd882db0102yuek.html <百面机器学习算法工程师带你去面试>高清PDF及epub+<美团机器学习实践 ...

  5. 19 01 15 js 尺寸相关 滚动事件

    尺寸相关.滚动事件 1.获取和设置元素的尺寸 width().height() 获取元素width和height innerWidth().innerHeight() 包括padding的width和 ...

  6. Maven:Unable to import maven project: See logs for details

    一.开发环境 idea2019.1 + apache-maven-3.6.2 + JDK 1.8.0_111 二.问题说明 导入maven 多模块工程之后,发现工程没有多模块的展开,而且也没有在 Ex ...

  7. bzoj 4195程序自动分析

    先离散一下,然后并查集就好了. (一开始作大死,没全离散,WA一片) #include<bits/stdc++.h> #define INF 0x7fffffff #define LL l ...

  8. Mac Go 环境变量配置

    GOPATH 是工作目录,就是你打代码,代码的存放目录 GOROOT 是Go的安装目录,我下载的是免安装版的 现在的Go环境变量就是设置成这个样子, 终于Bee不会报错了!!!

  9. git 常见错误

    1.pack exceeds maximum allowed size 解决办法:git config http.postBuffer 52428800

  10. HBase从入门到精通系列:误删数据如何抢救?

    云栖君导读:有时候我们操作数据库的时候不小心误删数据,这时候如何找回?mysql里有binlog可以帮助我们恢复数据,但是没有开binlog也没有备份就尴尬了.如果是HBase,你没有做备份误删了又如 ...