【leetcode】Binary Tree Maximum Path Sum (medium)
Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
找树的最大路径和 注意路径可以从任意点起始和结束。
我发现我真的还挺擅长树的题目的,递归不难。就是因为有个需要比较的量(最大和),所以需要再写一个函数。
因为路径可以从任意点起始和结束,所以每次递归的时候左右子树小于等于0的就可以不管了。
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std; //Definition for binary tree
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
int maxPathSum(TreeNode *root){
if(root == NULL)
{
return ;
}
int MaxPathSum = root->val; //赋的初值一定要小于等于最后的值
maxPathSumCur(root, MaxPathSum);
return MaxPathSum;
}
int maxPathSumCur(TreeNode *root, int& MaxPathSum) {
if(root == NULL)
{
return ;
} int lsum = maxPathSumCur(root->left, MaxPathSum);
int rsum = maxPathSumCur(root->right, MaxPathSum);
int maxPathSumCurrent = root->val; //每次根的值一定要加上 左右子树的就加大于0的
if(lsum > )
{
maxPathSumCurrent += lsum;
}
if(rsum > )
{
maxPathSumCurrent += rsum;
} MaxPathSum = max(maxPathSumCurrent, MaxPathSum);
return max(root->val, max(root->val + lsum, root->val +rsum)); //返回时返回根 节点加左 或右子树 或单独根节点中最大的
}
void create(TreeNode *& root)
{
int d;
scanf("%d", &d);
if(d != )
{
root = new TreeNode(d);
create(root->left);
create(root->right);
}
}
}; int main()
{
Solution s;
TreeNode * T = NULL;
s.create(T);
int sum = s.maxPathSum(T); return ;
}
【leetcode】Binary Tree Maximum Path Sum (medium)的更多相关文章
- 【leetcode】Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- leetcode 124. Binary Tree Maximum Path Sum 、543. Diameter of Binary Tree(直径)
124. Binary Tree Maximum Path Sum https://www.cnblogs.com/grandyang/p/4280120.html 如果你要计算加上当前节点的最大pa ...
- 第四周 Leetcode 124. Binary Tree Maximum Path Sum (HARD)
124. Binary Tree Maximum Path Sum 题意:给定一个二叉树,每个节点有一个权值,寻找任意一个路径,使得权值和最大,只需返回权值和. 思路:对于每一个节点 首先考虑以这个节 ...
- 【LeetCode OJ】Binary Tree Maximum Path Sum
Problem Link: http://oj.leetcode.com/problems/binary-tree-maximum-path-sum/ For any path P in a bina ...
- leetcode@ [124] Binary Tree Maximum Path Sum (DFS)
https://leetcode.com/problems/binary-tree-maximum-path-sum/ Given a binary tree, find the maximum pa ...
- [leetcode]124. Binary Tree Maximum Path Sum二叉树最大路径和
Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any ...
- [LeetCode] 124. Binary Tree Maximum Path Sum 求二叉树的最大路径和
Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any ...
- LeetCode 124. Binary Tree Maximum Path Sum 二叉树中的最大路径和 (C++/Java)
题目: Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as ...
- leetcode 124. Binary Tree Maximum Path Sum
Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...
随机推荐
- C# Winform 脱离 Framework (一)
Linker是一个命令行工具,它以将我们的.net程序生成可脱离.net framework环境运行的程序 . Linker不支持中文的路径,在程序中也不能有中文的标识符. Linker 有2种部署方 ...
- eclipse emacs
eclipse emacs 插件 http://www.mulgasoft.com/emacsplus eclipse字体设置: 一.把字体设置为Courier New 操作步骤:打开Elcipse ...
- WordPress文章浏览历史插件
选自:http://www.ludou.org/wordpress-recently-viewed.html 最近有很多网友问我,露兜博客右边栏底部的 您刚刚看过 栏目是怎么实现.其实我也是参考的这篇 ...
- HDU 1174 爆头(计算几何)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1174 解题报告:就是用到了三维向量的点积来求点到直线的距离,向量(x1,y1,z1)与(x2,y2,z ...
- const 和宏的区别
参考:http://blog.sina.com.cn/s/blog_79b01f6601018xdg.html (1) 编译器处理方式不同 define宏是在预处理阶段展开. const常量是编译运行 ...
- linux定时执行脚本
阅读目录 1. cron服务[Ubuntu环境] 2. crontab用法 3. 编辑crontab文件 4. 流程举例 5. 几个例子 Linux中,周期执行的任务一般由cron这个守护进程来处理. ...
- Codeforces Gym 101138 D. Strange Queries
Description 给你一下长度为 \(n\) 的序列. \(a_i=a_j\) \(l_1 \leqslant i \leqslant r_1\) \(l_2 \leqslant i \leqs ...
- uploadify插件的功能应用
一.相关key值介绍 uploader:uploadify.swf文件的相对路径,该swf文件是一个带有文字BROWSE的按钮,点击后淡出打开文件对话框,默认值:uploadify.swf. scri ...
- php类与对象
1.类与对象 对象:实际存在该类事物中每个实物的个体.$a =new User(); 实例化后的$a 引用:php的别名,两个不同的变量名字指向相同的内容 封装: 把对象的属性和方法组织在一个类(逻辑 ...
- 有向图寻找(一个)奇环 -- find an oddcycle in directed graph
/// the original blog is http://www.cnblogs.com/tmzbot/p/5579020.html , automatic crawling without l ...